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Reviewer Prof. Dr. Ing. Dinu
COLŢUC
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h(n) and the input xĝ(n). . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Normalized projection misalignment of the OLMS-BF and NLMS-BF

(using different step-size parameters): (top) identification of the tem-

poral impulse response h(n), (bottom) identification of the spatial im-

pulse response g(n). The input signals are WGNs, L = 64, and M = 8. 43

ix



2.9 Normalized misalignment of the OLMS-BF and NLMS-BF (using dif-

ferent step-size parameters). The input signals are WGNs and ML =

512. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Normalized projection misalignment of the OLMS-BF and NLMS-BF

(using different step-size parameters): (top) identification of the tem-

poral impulse response h(n), (bottom) identification of the spatial im-

pulse response g(n). The input signals are AR(1) processes, L = 64,

and M = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Normalized misalignment of the OLMS-BF and NLMS-BF algorithms

(using different step-size parameters). The input signals are AR(1)

processes and ML = 512. . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Normalized misalignment of the OLMS-BF and regular JO-NLMS al-

gorithms. The input signals are WGNs and ML = 512. . . . . . . . . 45

2.13 Normalized misalignment for the OLMS-BF and regular JO-NLMS

algorithms. The input signals are AR(1) processes and ML = 512. . . 46

2.14 Normalized projection misalignment of the OLMS-BF and NLMS-BF

(using different step-size parameters): (top) identification of the tem-

poral impulse response h(n), (bottom) identification of the spatial im-

pulse response g(n). The input signals are AR(1) processes, L = 512,

and M = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.15 Normalized projection misalignment for the OLMS-BF and NLMS-BF

algorithms. The input signals are AR(1) processes and ML = 2048. . 48

2.16 The correlation matrix, Rx, for three types of input signals. . . . . . 56

2.17 The evolution of the trace of the SMCM, normalized to the first value,

in dB, for three types of input signals . . . . . . . . . . . . . . . . . . 57

2.18 The SMCM for three types of input signals after 104 iterations of the

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



2.19 The SMCM for three types of input signals after 105 iterations of the

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.20 The elements on the main diagonal of the SMCM for three types of

input signals, when µ = 0.01 . . . . . . . . . . . . . . . . . . . . . . . 60

2.21 The elements on the main diagonal of the SMCM for three types of

input signals, when µ = 0.02 . . . . . . . . . . . . . . . . . . . . . . . 60

2.22 The elements on the first line of the SMCM for three types of input

signals after 104 iterations of the algorithm . . . . . . . . . . . . . . . 61

2.23 The elements on the first line of the SMCM for three types of input

signals after 105 iterations of the algorithm . . . . . . . . . . . . . . . 61

2.24 Normalized misalignment of the KF-BF and regular KF using WGNs as

input signals. The length of the global impulse response is ML = 512.

The specific parameters are set to σ2
wh

= σ2
wg

= σ2
w = 10−9. . . . . . . 67

2.25 Normalized misalignment of the KF-BF and regular KF using AR(1)

processes as input signals. The length of the global impulse response is

ML = 512. The specific parameters are set to σ2
wh

= σ2
wg

= σ2
w = 10−9. 67

2.26 Normalized misalignment of the SKF-BF and regular SKF using WGNs

as input signals. The length of the global impulse response is ML =

512. The specific parameters are set to σ2
wh

= σ2
wg

= σ2
w = 10−9. . . . 68

2.27 Normalized misalignment of the SKF-BF and regular SKF using AR(1)

processes as input signals. The length of the global impulse response is

ML = 512. The specific parameters are set to σ2
wh

= σ2
wg

= σ2
w = 10−9. 68

2.28 Normalized misalignment of the SKF-BF and regular SKF (for WGNs

input signals), using the recursive estimates σ̂2
wh

(n) and σ̂2
w(n), respec-

tively; the SKF-BF uses σ2
wg

= 0. The length of the global impulse

responses is ML = 512. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



2.29 Normalized misalignment of the SKF-BF and regular SKF (for AR(1)

input signals), using the recursive estimates σ̂2
wh

(n) and σ̂2
w(n), respec-

tively; the SKF-BF uses σ2
wg

= 0. The length of the global impulse

responses is ML = 512. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.30 Normalized misalignment of the SKF-BF and OLMS-BF algorithms

using WGNs as input signals. Both algorithms use the recursive esti-

mate σ̂2
wh

(n) and σ2
wg

= 0. The length of the global impulse responses

is ML = 512. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.31 Normalized misalignment of the SKF-BF and OLMS-BF algorithms

using AR(1) processes as input signals. Both algorithms use the recur-

sive estimate σ̂2
wh

(n) and σ2
wg

= 0. The length of the global impulse

responses is ML = 512. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Impulse responses used in simulations: (a) h1 of length L1 = 64

(the first impulse response from G168 Recommendation [55]), (b) h2

of length L2 = 8 (random impulse response with Gaussian distribu-

tion), (c) h3 of length L3 = 4 (its elements are evaluated as h3l3 =

0.5l3−1, l3 = 1, . . . , L3), and (d) the global impulse response h =

h3 ⊗ h2 ⊗ h1 of length L = L1L2L3 = 2048. . . . . . . . . . . . . . . . 98

3.2 NM of the conventional Wiener filter as a function of the number

of available data samples used to estimate the statistics (N), for the

identification of the global impulse response from Fig. 3.1d. The input

signals are AR(1) processes, L = 2048, and σ2
v = 0.01. . . . . . . . . . 99

3.3 NM of the conventional and iterative Wiener filters, for different values

of the number of available data samples used to estimate the statistics

(N), for the identification of the global impulse response from Fig. 3.1d.

The input signals are AR(1) processes, L = 2048, and σ2
v = 0.01. . . . 101

xii



3.4 NPM of the iterative Wiener filter, for different values of the number

of available data samples used to estimate the statistics (N), for the

identification of the individual impulse responses from Fig. 3.1a–c: (a)

NPM
(
h1, ĥ
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Chapter 1

Introduction

1.1 Context and Description of the Research Field

Adaptive algorithms have been successfully used in system identification for a long

time (see [1, 2, 3] and many others). The well-known Wiener filter [4] constitutes the

theoretical benchmark and starting point for many of these algorithms. Some of the

most popular such algorithms are the least-mean-square (LMS) algorithm [5, 6, 7],

the recursive least-squares (RLS) algorithm [8], and the affine projection algorithm

(APA) [1, 9, 10]. The Kalman filter (KF) [11] can also be used successfully in system

identification problems. Different variants of these algorithms have been developed

to solve specific problems; the most related applications to the work presented in

this thesis are in the acoustic echo cancellation area, where the previously mentioned

algorithms are extremely popular [1, 2, 9, 10, 12, 13, 14, 15, 16].

Nonlinear systems have also been studied for a long time, and the theory of non-

linear algorithms is used nowadays in many important fields. However, a global tech-

nique for treating nonlinear problems has not been found yet, and the approaches to

address this problem are different and depend on the application and on the types

of nonlinearities. A particular type of nonlinear systems are the multilinear in pa-
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rameters systems. This specific category can be regarded as an ensemble of (approxi-

mately) linear structures. Basically, the multilinear term is understood in the context

of a global nonlinear separable system, which is composed of shorter linear systems.

In this way, if all the individual impulse responses are kept constant, except one,

the global filter would be a linear function of that system. Some popular examples

of this type are nonlinear electronic devices, for example acoustic echo cancellers,

which can be used in applications for two-party or multi-party voice communications

(e.g., videoconference solutions). These can be modeled as a cascade of nonlinear

and linear systems, similar to the Hammerstein model [17, 18]. Other structures that

may be treated as separable multilinear systems are the multiple-input/single-output

(MISO) systems. The high dimension of the parameter space in such problems can

be approached with techniques which use tensor decompositions and modelling.

1.2 Purpose of the Thesis

This thesis focuses on analyzing and developing adaptive algorithms for nonlinear sys-

tems. More specifically, the second and third chapters aim to develop such algorithms

tailored for several types of multilinear in parameters systems. In this framework,

the cases of bilinear and trilinear structures are studied, obtaining appealing solutions

that can be applied with better performance than the existing approaches. In addi-

tion, a mathematical analysis of the properties of the system mismatch covariance

matrix (SMCM) of the LMS algorithm is conducted, with interesting results. The

parameters involved in the adaptive algorithms are also studied, in order to reach the

estimations that can ensure good identification performances.

Moreover, in the fourth chapter, we treat the general case of systems which are

not perfectly separable, and in this context we propose a KF that uses the nearest

Kronecker product (NKP) decomposition technique, together with low-rank approx-
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imation, to identify this kind of spatiotemporal systems. Then, in the fifth chapter,

we focus on a slightly different case of supposedly linear systems that present small

nonlinearities and we provide an adaptive solution for the identification of such sys-

tems.

For all the theoretical studies that are presented in this thesis, experiments are

also conducted to show the applicability of the approaches. The performance of the

proposed algorithms is always illustrated in comparison with the already existent

options that can be used in the same scenarios. This is done in order to have a

correct perspective on the advantages and drawbacks of the provided solutions.

1.3 Thesis Contents

The thesis is structured into four main chapters, followed by a final one dedicated

to the summary of the work and presenting future directions. Each chapter contains

separate subchapters for every new subject treated in the general context of the

chapter. Every original theoretical contribution is followed by experimental data to

support the theoretical findings. The contents of each chapter are shortly described

below.

Chapter 2 starts by describing the general framework in which the subsequent de-

velopments are made. In this context, bilinear forms (BF) are defined in the context

of a MISO system, with respect to the impulse responses of a spatiotemporal model.

As will be explained, this approach is different from the usual definition of BF used

in previous works, namely in terms of an input-output relation. Once the framework

was defined, the chapter continues by shortly reviewing a Wiener filter, along with

an LMS adaptive algorithm and an NLMS, tailored for BF (LMS-BF, respectively

NLMS-BF). These previous works’ results are necessary for a better understanding

of the subsequent developments. The next step is the detailed presentation our con-

3
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tributions in the field of BF. To begin with, an APA and an improved proportionate

version of it are developed in the context of BF (APA-BF, respectively IPAPA-BF).

Then, an optimized LMS algorithm adapted to the case of BF (OLMS-BF) is intro-

duced in subchapter 2.5, which was obtained through the optimization of the step-size

parameter in the LMS-BF algorithm. This is followed by a mathematical analysis of

the properties of the system mismatch covariance matrix (SMCM) in the LMS adap-

tive filter, in 2.6. Then, in 2.7, a KF for BF is derived (KF-BF), together with a

computationally simplified version of it (SKF-BF). Finally, an interesting parallel be-

tween the SKF-BF and the OLMS-BF algorithm is outlined. The last part of the

chapter draws some conclusions on the presented matters.

In Chapter 3, we begin with an introduction in the study of tensors, which are the

main mathematical tools used when working with trilinear forms (TF), followed by

laying out the system model for the context of TF. We continue by deriving a Wiener

filter tailored for the particular case of TF, comprising both a direct and an iterative

version, and then we present the LMS algorithm for TF (LMS-TF). By changing

the step-size from constant to time-variant, we reach the NLMS algorithm used for

TF (NLMS-TF). The performance of the developed solutions is emphasized through

simulations and then a few general final remarks are set out.

Chapter 4 commences by overviewing an efficient approach for the identification

of low-rank systems, via the NKP decomposition, followed by a low-rank approxima-

tion. The core of the chapter is represented by the development (using the already

mentioned techniques) of a KF capable of working in system identification problems

with long length impulse responses to be identified (KF-NKP). The potentially prob-

lematic choice of some of the parameters of this algorithm is discussed, and solutions

are provided and then tested through extensive simulations. The advantages and

drawbacks of the proposed approach are outlined in the final part of the chapter.

4
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Next, in Chapter 5, an interesting case study is outlined, namely an adaptive

solution for the identification of supposedly linear systems that contain small nonlin-

earities. The problem setup is introduced, then the proposed method is presented,

and the simplicity and the efficiency are highlighted through experiments. Lastly, a

discussion on the possible future improvements is conducted.

The last chapter is dedicated to a summary of the contributions described in the

thesis and to perspectives for future work.

5
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Chapter 2

Bilinear Forms (BF)

This chapter presents the development of various well-known algorithms in the con-

text of bilinear forms (BF). We start by introducing the system model and explaining

how BF are understood in this framework (in subchapter 2.1). Then, in subchap-

ters 2.2 and 2.3, a brief presentation of the Wiener filter and the least-mean-square

(LMS) type adaptive algorithms is done. Despite not being actual contributions of

this work, they are required, as they provide a basis for the subsequent developments

which constitute the novel ideas of the thesis. We continue by detailing the derivation

of an affine projection algorithm for BF (APA-BF), together with an improved pro-

portionate version of it, followed by an optimized LMS (OLMS) algorithm tailored for

the identification of BF, in subchapter 2.5, completed by experimental results which

prove the performance of the proposed solution. Next, in subchapter 2.6, we provide

a theoretical analysis of the system mismatch covariance matrix (SMCM) in the LMS

adaptive algorithm, together with simulations to support the presented ideas. The

Kalman filter for BF (KF-BF) is then introduced in 2.7, together with a computa-

tionally simplified version (SKF-BF). Again, we support our statements by showing

experimental results. An interesting parallel between the OLMS and the KF is then

drawn in subchapter 2.8, and a comparison of their performance is done, both the-
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oretically and through simulations. We end the chapter by drawing the conclusions

with respect to the work presented.

The results presented in the following have been published in [19, 20, 21, 22, 23].

2.1 System Model for Bilinear Forms

The information presented in this subchapter was published in [21].

Bilinear systems were previously treated in various contexts [24], such as the

nonlinear systems approximation. The applications derived from there are numerous,

among which we can mention system identification [25, 26, 27, 28], design of digital

filters [29], echo cancellation [30], chaotic communications [31], active noise control

[32], neural networks [33], etc. In all these papers, the bilinear term is understood in

terms of an input-output relation (with respect to the data).

More recently, a new approach was studied in [34], where the bilinear term was

defined in the context of a multiple-input/single-output (MISO) system, with respect

to the impulse responses of a spatiotemporal model. In [34], the Wiener filter solution

for the identification of such BF was proposed, and then, in [35, 36], some adaptive

solutions based on different basic algorithms were provided. Similar frameworks can

be found in [37, 38, 39, 17], in conjunction with specific applications, such as channel

equalization and nonlinear acoustic echo cancellation; however, these works were not

associated with the identification of BF or analyzed in this context.

Throughout this chapter, we will consider the interpretation of BF in the frame-

work of a MISO system, as being composed of the impulse responses of a spatiotem-

poral model. The signal model that will be used for the system identification problem

with BF is given by [34]:

d(n) = hT (n)X(n)g(n) + v(n) = y(n) + v(n), (2.1)

8
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where d(n) is the zero-mean desired (or reference) signal at the discrete-time in-

dex n, h(n) and g(n) are the two impulse responses of the system of lengths

L and M , respectively, the superscript T is the transpose operator, X(n) =

[x1(n) x2(n) . . . xM(n)] is the zero-mean multiple-input signal matrix, xm(n) =

[xm(n) xm(n − 1) . . . xm(t − L + 1)]T is a vector containing the L most recent

time samples of the mth (m = 1, 2, . . . ,M) input signal, y(n) = hT (n)X(n)g(n) is

the output signal and it represents a bilinear form, and v(n) is a zero-mean additive

noise (with the variance σ2
v). It is assumed that all signals are real-valued, and X(n)

and v(n) are independent. As we can notice, y(n) is a bilinear function of h(n) and

g(n), because for every fixed h(n), y(n) is a linear function of g(n), and for every

fixed g(n), it is a linear function of h(n). In this context, the impulse responses

h(n) and g(n) can be regarded as the temporal, respectively the spatial parts of the

system, respectively.

We can rewrite the matrix X(n), of size L ×M , as a vector of length ML, by

using the vectorization operation:

vec[X(n)] = [xT1 (n) xT2 (n) . . . xTM(n)]T = x̃(n). (2.2)

Therefore, the output signal can be expressed as

y(n) = hT (n)X(n)g(n) = tr
[(

h(n)gT (n)
)T

X(n)
]

= vecT
(
h(n)gT (n)

)
vec[X(n)] = [g(n)⊗ h(n)]T x̃(n)

= fT (n)x̃(n), (2.3)

where tr{·} denotes the trace of a matrix, ⊗ denotes the Kronecker product between

the individual impulse responses, while the vector f(n) = g(n)⊗h(n), of length ML,

represents the spatiotemporal (i.e., global) impulse response of the system. Conse-

9
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quently, the signal model in (2.1) becomes

d(n) = [g(n)⊗ h(n)]T x̃(n) + v(n) = fT (n)x̃(n) + v(n). (2.4)

The major difference compared to a general MISO system is yielded by the fact

that in this bilinear context f(n) is formed with only M+L different elements, despite

its length ML.

The goal is the identification of the two impulse responses h(n) and g(n), and, in

this way, of the spatiotemporal impulse response f(n). For this aim, we can use two

adaptive filters, ĥ(n) and ĝ(n); hence, the global impulse response can be evaluated

as

f̂(n) = ĝ(n)⊗ ĥ(n). (2.5)

Let η 6= 0 be a real-valued constant. We can see from (2.1) that

[
1

η
hT (n)

]
X(n) [ηg(n)] = hT (n)X(n)g(n) = y(n), (2.6)

meaning that the pairs [h(n)/η, ηg(n)] and [h(n),g(n)] are equivalent in the bilinear

form. This implies that we can only identify ĥ(n) and ĝ(n) up to a scaling factor.

A similar discussion can be found in [17, 37] in the framework of blind identifica-

tion/equalization and nonlinear acoustic echo cancellation, respectively. Nevertheless,

because

f(n) = g(n)⊗ h(n) = [ηg(n)]⊗
[

1

η
h(n)

]
, (2.7)

the global impulse response can be identified with no scaling ambiguity. Consequently,

for the performance evaluation of the identification of the temporal and spatial filters,

we can use the normalized projection misalignment (NPM), defined in [40]:

10
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NPM
[
h(n), ĥ(n)

]
= 1−

[
hT (n)ĥ(n)

‖h(n)‖‖ĥ(n)‖

]2
, (2.8)

NPM [g(n), ĝ(n)] = 1−
[

gT (n)ĝ(n)

‖g(n)‖‖ĝ(n)‖

]2
, (2.9)

where ‖ · ‖ denotes the Euclidean norm. On the other hand, for the identification of

the global filter, f(n), we should use the normalized misalignment (NM):

NM
[
f(n), f̂(n)

]
=
‖f(n)− f̂(n)‖2

‖f(n)‖2
. (2.10)

When studying the system identification problem in terms of the Wiener filter,

the assumption is that the two impulse responses that need to be identified are time-

invariant (which represents a basic assumption in this context). In practice, however,

when approaching the system identification problem using adaptive algorithms, we

must take into account the fact that the systems which need to be identified vary in

time. Thus, we assume that h(n) and g(n) are zero-mean random vectors, following

a simplified first-order Markov model, i.e.,

h(n) = h(n− 1) + wh(n), (2.11)

g(n) = g(n− 1) + wg(n), (2.12)

where wh(n) and wg(n) are zero-mean white Gaussian noise (WGN) vectors, with

correlation matrices Rwh
(n) = σ2

wh
IL and Rwg(n) = σ2

wg
IM , respectively (with IL and

IM being the identity matrices of sizes L× L and M ×M , respectively). We assume

that wh(n) is uncorrelated with h(n− 1) and v(n), while wg(n) is uncorrelated with

g(n − 1) and v(n). The variances σ2
wh

and σ2
wg

capture the nonstationarity in h(n)

and g(n), respectively.
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2.2 Wiener Filter for Bilinear Forms

The Wiener filter for BF was introduced in [34]. The short presentation of this

algorithm which is made in this subchapter is inspired from [34]. This overview

constitutes the basis for the subsequent developments (contributions of the present

work) and is therefore required at this point.

As specified before, when deriving the Wiener filter, the usual assumption is that

the impulse responses are time invariant. Consequently, given the two estimated

filters ĥ and ĝ, the estimated signal is given by:

ŷ(n) = ĥTX(n)ĝ. (2.13)

As a result, the error signal between the desired and estimated signals is defined as

e(n) = d(n)− ŷ(n) = d(n)− ĥTX(n)ĝ = d(n)−
[
ĝ ⊗ ĥ

]T
x̃(n) = d(n)− f̂T x̃(n).

(2.14)

2.2.1 Direct Wiener Filter

The first step when computing the spatiotemporal filter f̂ = ĝ ⊗ ĥ is to minimize a

cost function, which is based on the error signal in (2.14). The most suitable and

popular choice for this criterion is the mean-squared error (MSE):

J
(
ĥ, ĝ

)
= E

[
e2(n)

]
= σ2

d − 2
(
ĝ ⊗ ĥ

)T
p +

(
ĝ ⊗ ĥ

)T
R
(
ĝ ⊗ ĥ

)
= σ2

d − 2f̂Tp + f̂TRf̂ = J
(
f̂
)
, (2.15)

where E[·] denotes mathematical expectation, p = E [x(n)d(n)] (the cross-correlation

vector between the input and the reference signals), and R = E
[
x(n)xT (n)

]
(the

covariance matrix of the input signal). The quantity σ2
d = E [d2(n)] is the variance of

12
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the reference signal, which can be computed based on (2.4) as:

σ2
d = E

[
d2(n)

]
= (g ⊗ h)T R (g ⊗ h) + σ2

v . (2.16)

As a consequence, the signal-to-noise ratio (SNR) can be expressed as:

SNR =
(g ⊗ h)T R (g ⊗ h)

σ2
v

. (2.17)

The minimization of (2.15) leads to the well-known solution of the Wiener filter:

f̂ = R−1p. (2.18)

The estimated global impulse response can be rewritten as

f̂ = ĝ ⊗ ĥ =
[
ĥT ĝ2ĥ

T · · · ĝM ĥT
]T

=
[
f̂T1 f̂T2 · · · f̂TM

]T
, (2.19)

where ĝm,m = 1, · · · ,M are the components of ĝ. Since (2.19) represents a system

of ML equations with M +L unknowns, there is no unique solution. Consequently, a

scaling ambiguity arises, which we absorb in ĝ by assuming (without loss of generality)

that ĝ1 = 1. It is clear from (2.19) that the first L elements of f̂ correspond to ĥ.

In order to compute the elements ĝi, i = 2, · · · ,M , we need to minimize ‖f̂i − ĝiĥ‖2.

The following expression is obtained:

ĝi =
f̂Ti ĥ

ĥT ĥ
. (2.20)

The matrix R, from relation (2.18), needs to be estimated. This matrix, of size

ML ×ML, consists of M2 submatrices of size L × L each (Rij = E
[
xi(n)xTj (n)

]
,

i, j = 1, 2, · · · ,M); each Rij contains the rows from (i−1)L+1 to iL and the columns

13
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from (j − 1)L+ 1 to jL of R. Rmm, m = 1, 2, · · · ,M are the covariance matrices of

xm(n). It can be observed that R is a symmetric block Toeplitz matrix.

Because of the large size of the matrix R, we need to have available a large amount

of data in order to obtain a good estimate of it. Otherwise, the estimate of R will

be very ill conditioned or will not even be full rank, leading to a very inaccurate

value of f̂ . In this closed-form method, ML coefficients need to be identified, but we

actually have only M +L coefficients to identify. Moreover, in the case when there is

a mismatch between the true model and the assumed one, this technique will likely

yield bad results [34].

2.2.2 Iterative Wiener Filter

The second possibility is to derive an iterative version of the Wiener filter [34], which

exploits the idea that only M + L coefficients need to be identified. This procedure

can give good results with a smaller amount of data as compared to the direct Wiener

filter. This method is similar to the coordinate descent approach [41]. As mentioned

at the beginning of this chapter, the following developments belong to [34], and we

try to present them as briefly as possible. The following relations are used in the

developments [42]:

ĝ ⊗ ĥ = (ĝ ⊗ IL) ĥ (2.21)

=
(
IM ⊗ ĥ

)
ĝ, (2.22)

where IL and IM are the identity matrices having sizes L×L and M×M , respectively.

Using relations (2.21) and (2.22), we can express the MSE criterion as

J
(
ĥ, ĝ

)
= σ2

d − 2ĥTpĝ + ĥTRĝĥ (2.23)

= σ2
d − 2ĝTpĥ + ĝTRĥĝ, (2.24)
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where

pĝ = (ĝ ⊗ IL)T p, (2.25)

Rĝ = (ĝ ⊗ IL)T R (ĝ ⊗ IL) , (2.26)

and

pĥ =
(
IM ⊗ ĥ

)T
p, (2.27)

Rĥ =
(
IM ⊗ ĥ

)T
R
(
IM ⊗ ĥ

)
. (2.28)

In the case when ĝ is fixed, we express (2.23) as

Jĝ

(
ĥ
)

= σ2
d − 2ĥTpĝ + ĥTRĝĥ, (2.29)

and when ĥ is fixed, we write (2.24) as

Jĥ (ĝ) = σ2
d − 2ĝTpĥ + ĝTRĥĝ.[34] (2.30)

In the following, the iterative algorithm is derived. First, at iteration 0, we can

initialize ĝ(0) = (1/M)

[
1 1 · · · 1

]T
. By substituting ĝ(0) in (2.25)–(2.26), we

obtain

p
(0)
ĝ =

(
ĝ(0) ⊗ IL

)T
p,

R
(0)
ĝ =

(
ĝ(0) ⊗ IL

)T
R
(
ĝ(0) ⊗ IL

)
.

Replacing these quantities into the MSE in (2.29), we get at iteration 1:

Jĝ

(
ĥ(1)
)

= σ2
d − 2

(
ĥ(1)
)T

p
(0)
ĝ +

(
ĥ(1)
)T

R
(0)
ĝ ĥ(1),
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which can be minimized with respect to ĥ(1) and it yields

ĥ(1) =
(
R

(0)
ĝ

)−1
p
(0)
ĝ .

Using ĥ(1) in (2.27)–(2.28), we get

p
(1)

ĥ
=
(
IM ⊗ ĥ(1)

)T
p,

R
(1)

ĥ
=
(
IM ⊗ ĥ(1)

)T
R
(
IM ⊗ ĥ(1)

)
,

and the corresponding minimum MSE (MMSE) is

Jĝ

(
ĥ(1)
)

= σ2
d −

(
p
(0)
ĝ

)T (
R

(0)
ĝ

)−1
p
(0)
ĝ .

Using p
(1)

ĥ
and R

(1)

ĥ
, we can calculate the MSE in (2.30) as

Jĥ
(
ĝ(1)
)

= σ2
d − 2

(
ĝ(1)
)T

p
(1)

ĥ
+
(
ĝ(1)
)T

R
(1)

ĥ
ĝ(1).

By minimizing the previous expression with respect to ĝ(1), we obtain

ĝ(1) =
(
R

(1)

ĥ

)−1
p
(1)

ĥ
,

with the corresponding MMSE:

Jĥ
(
ĝ(1)
)

= σ2
d −

(
p
(1)

ĥ

)T (
R

(1)

ĥ

)−1
p
(1)

ĥ
.

By further iterating up to n, we obtain the temporal impulse response’s estimate:

ĥ(n) =
(
R

(n−1)
ĝ

)−1
p
(n−1)
ĝ , (2.31)
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where

R
(n−1)
ĝ =

(
ĝ(n−1) ⊗ IL

)T
R
(
ĝ(n−1) ⊗ IL

)
, (2.32)

p
(n−1)
ĝ =

(
ĝ(n−1) ⊗ IL

)T
p, (2.33)

and the spatial impulse response’s estimate:

ĝ(n) =
(
R

(n)

ĥ

)−1
p
(n)

ĥ
, (2.34)

where

R
(n)

ĥ
=
(
IM ⊗ ĥ(n)

)T
R
(
IM ⊗ ĥ(n)

)
, (2.35)

p
(n)

ĥ
=
(
IM ⊗ ĥ(n)

)T
p. (2.36)

Finally, the Wiener global filter at iteration n is

̂̃
f
(n)

= ĝ(n) ⊗ ĥ(n), (2.37)

where ĝ(n) and ĥ(n) are given by (2.34) and (2.31), respectively. This approach is

called the iterative Wiener filter [34]. The convergence proof for the iterative Wiener

filter in a similar scenario can be found in [43]. A very similar iterative method was

also studied in [44]. The decrease of the NM below a certain established threshold

value can be set as a condition for stopping the iterative process.
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2.3 Least-Mean-Square Type Adaptive Algo-

rithms for the Identification of Bilinear Forms

In this part, we start by shortly introducing the LMS adaptive algorithm tailored

for the special case of BF, namely LMS-BF, together with its normalized version

(NLMS-BF), which were derived in [35]. Although they are not contributions of this

work, a brief overview of these algorithms is required in order to provide a better

understanding of the subsequent parts (especially the OLMS-BF algorithm, which

constitutes the object of subchapter 2.5).

2.3.1 Least-Mean-Square Algorithm for Bilinear Forms

(LMS-BF)

This part was presented in [35]. In the previous subchapter, the system identification

problem was treated based on the Wiener filter, and two types of the Wiener filter were

derived: the direct form and the iterative form. It was seen that the iterative solution

is much better, since it leads to good estimates of the impulse responses, even with

a small amount of data available for the statistics estimation. Despite this, for some

practical cases, such as real-time applications, for example, the iterative Wiener filter

presented in [34] may not be very convenient, because of the well-known limitations

of the Wiener filter (matrix inversion operations, estimation of the statistics, etc).

Therefore, we may treat the identification problem in terms of adaptive filtering. The

LMS algorithm solution is shortly described in the following.

First, we consider the two adaptive filters ĥ(n) and ĝ(n), and the corresponding

estimated signal:

ŷ(n) = ĥT (n− 1)X(n)ĝ(n− 1). (2.38)
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Consequently, we may define the error signal between the desired and estimated

signals as

e(n) = d(n)− ŷ(n) = d(n)− ĥT (n− 1)X(n)ĝ(n− 1)

= d(n)−
[
ĝ(n− 1)⊗ ĥ(n− 1)

]T
x̃(n) = d(n)− f̂T (n− 1)x̃(n). (2.39)

We may define it alternatively as

eĝ(n) = d(n)− ĥT (n− 1)x̃ĝ(n), (2.40)

eĥ(n) = d(n)− ĝT (n− 1)x̃ĥ(n), (2.41)

with

x̃ĝ(n) = [ĝ(n− 1)⊗ IL]T x̃(n), (2.42)

x̃ĥ(n) =
[
IM ⊗ ĥ(n− 1)

]T
x̃(n), (2.43)

where IL and IM are the identity matrices of sizes L×L and M ×M , respectively. It

can easily be checked that eĝ(n) = eĥ(n) = e(n). However, the notation from (2.40)

and (2.41) shall be kept for the clarity of the developments.

In this context, the LMS algorithm for BF (namely LMS-BF) can be written as

ĥ(n) = ĥ(n− 1)−
µĥ

2
×

∂e2ĝ(n)

∂ĥ(n− 1)

= ĥ(n− 1) + µĥx̃ĝ(n)eĝ(n) (2.44)

and

ĝ(n) = ĝ(n− 1)− µĝ

2
×

∂e2
ĥ
(n)

∂ĝ(n− 1)

= ĝ(n− 1) + µĝx̃ĥ(n)eĥ(n), (2.45)
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where µĥ > 0 and µĝ > 0 are the step-size parameters. As initialization, we can

choose [35]

ĥ(0) =

[
1 0 · · · 0

]T
,

ĝ(0) =
1

M

[
1 1 · · · 1

]T
.

2.3.2 Normalized LMS Algorithm for Bilinear Forms (NLMS-

BF) and the Improved Proportionate NLMS-BF

(IPNLMS-BF)

The step-size parameters from relations (2.44) and (2.45) are constant values, chosen

such that they ensure the stability of the algorithm (for more details, see [35]). How-

ever, when dealing with nonstationary signals, it may be more advantageous to use

an adaptive, time-dependent step-size parameter. In this context, a first idea is to

reformulate the solution in terms of the normalized NLMS algorithm. Consequently,

the update relations become

ĥ(n) = ĥ(n− 1) + µĥ(n)x̃ĝ(n)eĝ(n), (2.46)

ĝ(n) = ĝ(n− 1) + µĝ(n)x̃ĥ(n)eĥ(n), (2.47)

where µĥ(n) > 0 and µĝ(n) > 0 are the time-dependent step-size parameters.

A good way of computing the step-size parameters, taking into consideration the

stability conditions, is by cancelling the a posteriori error signals [45]. In our case,

we can define

εĝ(n) = d(n)− ĥT (n)x̃ĝ(n), (2.48)

εĥ(n) = d(n)− ĝT (n)x̃ĥ(n). (2.49)
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Substituting (2.46) into (2.48), and (2.47) into (2.49), with the conditions εĝ(n) = 0

and εĥ(n) = 0, respectively, we get

eĝ(n)
[
1− µĥ(n)x̃Tĝ (n)x̃ĝ(n)

]
= 0, (2.50)

eĥ(n)
[
1− µĝ(n)x̃T

ĥ
(n)x̃ĥ(n)

]
= 0. (2.51)

Next, considering that the a priori error is not null, we obtain that µĥ(n) =

1/[x̃Tĝ (n)x̃ĝ(n)] and µĝ(n) = 1/[x̃T
ĥ

(n)x̃ĥ(n)], which are the theoretical step-size

parameters of the NLMS algorithm for BF, namely NLMS-BF.

In practice, in order to achieve a good compromise between convergence rate and

misadjustment [1], we may employ two positive constants αĥ and αĝ, usually smaller

than 1, which multiply these step-sizes. These constants are called the normalized

step-sizes. The NLMS-BF algorithm also needs to be regularized by adding two posi-

tive constants, δĥ and δĝ, to the denominators of the step-sizes. These regularization

parameters are usually chosen to be proportional to the variance of the input signal

[46]. Consequently, the NLMS-BF algorithm is described by the updates:

ĥ(n) = ĥ(n− 1) +
αĥx̃ĝ(n)eĝ(n)

x̃Tĝ (n)x̃ĝ(n) + δĥ
, (2.52)

ĝ(n) = ĝ(n− 1) +
αĝx̃ĥ(n)eĥ(n)

x̃T
ĥ

(n)x̃ĥ(n) + δĝ
, (2.53)

whereas the global filter can be obtained using the Kronecker product, i.e., f̂(n) =

ĝ(n)⊗ ĥ(n) [35].

The following developments of this subchapter were published before in [23].

In many system identification problems, the systems to be identified are sparse

in nature, i.e., only a small percentage of the impulse response components have a

significant magnitude, while the rest are zero or small. Consequently, sparse adaptive

filters are frequently involved in such system identification problems. In this frame-
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work, most of these algorithms were developed in the context of echo cancellation

[47, 15]. Usually, they are referred to as proportionate algorithms [48, 49, 50, 51].

The basic idea is to “proportionately” redistribute the adaptation gain among all the

coefficients, emphasizing the large ones in order to speed up their convergence and,

consequently, to increase the overall convergence rate.

Starting from the the basic idea of proportionate-type algorithms, relation (2.52)

can be reformulated as

ĥ(n) = ĥ(n− 1) +
αĥQĥ(n− 1)x̃ĝ(n)eĝ(n)

x̃Tĝ (n)Qĥ(n− 1)x̃ĝ(n) + δ̃ĥ
, (2.54)

where

Qĥ(n− 1) = diag

[
qĥ,1(n− 1) · · · qĥ,L(n− 1)

]
(2.55)

denotes an L×L diagonal matrix, containing the proportionate factors qĥ,l(n−1) ≥ 0

(l = 1, 2, . . . , L) which depend on the coefficients of ĥ(n− 1), and δ̃ĥ = δĥ/L denotes

the regularization constant [46]. In a similar way, a proportionate term can also be

introduced in (2.53), resulting in

ĝ(n) = ĝ(n− 1) +
αĝQĝ(n− 1)x̃ĥ(n)eĥ(n)

x̃T
ĥ

(n)Qĝ(n− 1)x̃ĥ(n) + δ̃ĝ
, (2.56)

where

Qĝ(n− 1) = diag

[
qĝ,1(n− 1) · · · qĝ,M(n− 1)

]
(2.57)

denotes an M×M diagonal matrix, containing the proportionate factors qĝ,m(n−1) ≥

0 (m = 1, 2, . . . ,M) related to the coefficients of ĝ(n− 1); also, δ̃ĝ = δĝ/M denotes a

regularization constant [46].
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For the identification of sparse impulse responses, the improved proportionate

NLMS (IPNLMS) algorithm proposed in [48] represents one of the most reliable

choices. This algorithm uses the `1 norm to exploit the sparsity of the impulse re-

sponse that we need to identify. Next, by following the line of the IPNLMS algorithm

[48], we obtain that

qĥ,l(n− 1) =
1− κĥ

2L
+ (1 + κĥ)

∣∣∣ĥl(n− 1)
∣∣∣

2
∥∥∥ĥ(n− 1)

∥∥∥
1

, 1 ≤ l ≤ L, (2.58)

qĝ,m(n− 1) =
1− κĝ

2M
+ (1 + κĝ)

|ĝm(n− 1)|
2 ‖ĝ(n− 1)‖1

, 1 ≤ m ≤M, (2.59)

where κĥ (−1 ≤ κĥ < 1) and κĝ (−1 ≤ κĝ < 1) are parameters that can control the

amount of proportionality, while ‖·‖1 is the `1 norm. Using (2.54) and (2.56) instead

of (2.52) and (2.53), respectively, the IPNLMS algorithm tailored for the case of BF,

namely the IPNLMS-BF [52] results.

Finally, it can be mentioned that the regular IPNLMS algorithm [48] could also be

used for the identification of the global system impulse response, f . This algorithm is

obtained based on the reference signal expressed as in (2.4), together with the error

signal defined in the last part of expression (2.39), and including in its update the

ML×ML proportionate matrix

Qf̂ (n− 1) = diag

[
qf̂ ,1(n− 1) · · · qf̂ ,ML(n− 1)

]
, (2.60)

which is a diagonal matrix containing the proportionate factors qf̂ ,k(n− 1) ≥ 0 (k =

1, 2, . . . ,ML) depending on the coefficients of f̂(n− 1). These can be evaluated as

qf̂ ,k(n− 1) =
1− κ
2ML

+ (1 + κ)

∣∣∣f̂k(n− 1)
∣∣∣

2
∥∥∥f̂(n− 1)

∥∥∥
1

, 1 ≤ k ≤ML, (2.61)

where κ (−1 ≤ κ < 1) controls the amount of proportionality.
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However, another observation should be made, namely that the solution obtained

with the regular IPNLMS algorithm contains an adaptive filter of length ML, whereas

the IPNLMS-BF algorithm [using (2.54) and (2.56)] involves two short filters having

lengths L and M , respectively. Hence, the IPNLMS-BF can attain a faster conver-

gence speed in comparison to the IPNLMS algorithm [52].

2.4 Improved Proportionate Affine Projection Al-

gorithm for Bilinear Forms (IPAPA-BF)

The publication which contains the developments from this subchapter is [23].

In this chapter, we extend the approach introduced in the previous part to the

APA [53] and develop a proportionate version tailored for the identification of BF.

The main advantage of the APA over the NLMS algorithm consists of a superior

convergence rate, especially for correlated inputs. Simulation results indicate that

the proposed proportionate APA for BF outperforms the IPNLMS-BF algorithm in

terms of convergence rate.

Following the development of the NLMS-BF algorithm which was briefly

overviewed in subchapter 2.3.2, it is straightforward to derive the APA in the

bilinear context. First, let us introduce the notation:

X̃ĝ(n) =

[
x̃ĝ(n) x̃ĝ(n− 1) · · · x̃ĝ(n− P + 1)

]
, (2.62)

X̃ĥ(n) =

[
x̃ĥ(n) x̃ĥ(n− 1) · · · x̃ĥ(n− P + 1)

]
, (2.63)

d(n) =

[
d(n) d(n− 1) · · · d(n− P + 1)

]T
, (2.64)

where P denotes the projection order. Next, we define the error vectors:
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eĝ(n) = d(n)− X̃T
ĝ (n)ĥ(n− 1), (2.65)

eĥ(n) = d(n)− X̃T
ĥ

(n)ĝ(n− 1), (2.66)

so that the updates of the APA for BF (namely APA-BF) result in

ĥ(n) = ĥ(n− 1) + αĥX̃ĝ(n)
[
X̃T

ĝ (n)X̃ĝ(n) + δĥIP

]−1
eĝ(n), (2.67)

ĝ(n) = ĝ(n− 1) + αĝX̃ĥ(n)
[
X̃T

ĥ
(n)X̃ĥ(n) + δĝIP

]−1
eĥ(n), (2.68)

where IP is the identity matrix of size P × P . Clearly, for P = 1, the NLMS-BF

algorithm [35] is obtained.

The proportionate approach can also be applied to the APA-BF. Following the

development of the IPNLMS-BF algorithm and taking (2.67)–(2.68) into account, the

updates of the improved proportionate APA for BF (namely IPAPA-BF) result in

ĥ(n) = ĥ(n− 1) + αĥQĥ(n− 1)X̃ĝ(n)

×
[
X̃T

ĝ (n)Qĥ(n− 1)X̃ĝ(n) + δ̃ĥIP

]−1
eĝ(n), (2.69)

ĝ(n) = ĝ(n− 1) + αĝQĝ(n− 1)X̃ĥ(n)

×
[
X̃T

ĥ
(n)Qĝ(n− 1)X̃ĥ(n) + δ̃ĝIP

]−1
eĥ(n), (2.70)

where Qĥ(n− 1) and Qĝ(n− 1) are defined in (2.55) and (2.57), respectively, using

the proportionate factors from (2.58)–(2.59). The regularization parameters δ̃ĥ and

δ̃ĝ are chosen as in the case of the IPNLMS-BF algorithm. As we can notice from

(2.69)–(2.70), the IPNLMS-BF algorithm is obtained for P = 1, while the APA-BF

results if Qĥ(n− 1) = IL and Qĝ(n− 1) = IM .

Similar to the discussion from the end of 2.3.2, we should outline that the regular

APA [53] and its proportionate version IPAPA [54] could also be used to identify the

global impulse response, f . Based on the desired signal expressed in (2.4), the update
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of the conventional IPAPA is given by

f̂(n) = f̂(n− 1) + αQf̂ (n− 1)X̃(n)
[
X̃T (n)Qf̂ (n− 1)X̃(n) + δ

]−1
e(n), (2.71)

where the proportionate matrix Qf̂ (n−1) is obtained based on (2.60)–(2.61), the data

matrix X̃(n) of sizeML×P is defined as X̃(n) =

[
x̃(n) x̃(n− 1) · · · x̃(n− P + 1)

]
,

the error vector results in e(n) = d(n) − X̃T (n)f̂(n − 1), while α and δ denote the

normalized step-size and the regularization parameter, respectively. The update of

the regular APA results from (2.71) when Qf̂ (n−1) = IML, where IML is the identity

matrix of size ML×ML.

However, the solutions based on the conventional APA and IPAPA involve long

adaptive filters of length ML, while the APA-BF and IPAPA-BF use two shorter

filters of lengths L and M . Therefore, the APA-BF and IPAPA-BF should own a

faster convergence rate as compared to the regular APA and IPAPA, respectively.

2.4.1 Experimental Results

Simulations are performed in the framework of the MISO system described before,

from a system identification perspective. The temporal impulse response h is the first

impulse response from G168 Recommendation [55], padded with zeros until the length

L = 512. The spatial impulse response g is obtained by generating an exponential

decay, having coefficients gm = 0.5m, with m = 1, 2, . . . ,M ; in all experiments, we

choose M = 4. Then, both the temporal and the spatial impulse responses are

normalized, such that ‖h‖ = ‖g‖ = 1. The spatiotemporal system impulse response

is obtained as f = g ⊗ h, with the length ML = 2048.

The input signals xm(n), m = 1, 2, . . . ,M are generated either as WGNs or as

autoregressive signals of first order [AR(1)] processes; each AR(1) process is obtained

by filtering a WGN through a first-order system 1/ (1− 0.8z−1). The noise v(n) is
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Figure 2.1: Performance of the NLMS-BF and APA-BF in terms of NM. The input
signals are AR(1) processes and ML = 2048.
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Figure 2.2: Performance of the IPNLMS-BF and IPAPA-BF in terms of NM. The
input signals are AR(1) processes and ML = 2048.
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an additive WGN, having the variance σ2
v = 0.01. The measure of the performance is

the NM from (2.10), in dB, which evaluates the identification of the global impulse

response f .

First, the performance of the APA-BF is investigated. As compared to the NLMS-

BF algorithm, the APA-BF should provide an improved convergence rate, especially

for correlated inputs. This aspect is supported in Fig. 2.1, where the input signals

are AR(1) processes, the step-sizes are set to αĥ = αĝ = 0.1, and the regularization

parameters are δĥ = δĝ = 20σ2
x̃, where σ2

x̃ is the variance of x̃(n). The APA-BF uses

different values of the projection order, i.e., P = 2 and 4. As shown in Section 2.4,

the NLMS-BF algorithm is equivalent to APA-BF using P = 1. As we can notice in

these figures, the APA-BF clearly outperforms the NLMS-BF algorithm in terms of

convergence rate. The gain is significant for the APA-BF using P = 2, as compared

to the NLMS-BF algorithm. Even if the APA-BF using P = 4 leads to a faster

convergence rate, it also pays with an increased misalignment level. Due to this

reason (and also considering the complexity issues), the APA-BF using P = 2 could be

preferable in practice, since it achieves a proper compromise between the convergence

rate and misalignment.

The same conclusions are valid in case of the IPAPA-BF as compared to the

IPNLMS-BF algorithm. The results provided in Fig. 2.2 support this aspect. The

step-sizes are the same as in the previous experiment, but the regularization terms

are set to δ̃ĥ = 20σ2
x̃/L and δ̃ĝ = 20σ2

x̃/M , and the specific parameters are κĥ =

κĝ = 0. Again, the projection order P = 2 leads to the best compromise between the

performance criteria.

In Fig. 2.3, the performance of the regular APA is compared to its counterparts

tailored for BF, i.e., the APA-BF and IPAPA-BF. The input signals are WGNs and

the projection order is P = 2 for all the algorithms. First, we can notice that the

APA-BF outperforms the conventional APA in terms of convergence rate (as outlined
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Figure 2.3: Performance of the APA, APA-BF, and IPAPA-BF in terms of NM. The
input signals are white Gaussian noises and ML = 2048.

in Section 2.4). Second, the IPAPA-BF converges faster as compared to the APA-BF

in case of sparse impulse responses.

Finally, the performance of the conventional IPAPA and proposed IPAPA-BF

are investigated in Fig. 2.4. The input signals are AR(1) processes, the projection

order is set to P = 2, and different values of the step-sizes are used. The regular

IPAPA uses δ = 20σ2
x̃/(ML) and κ = 0. As we can notice, the IPAPA using α = 1

achieves the fastest converge rate but a higher misalignment level. The IPAPA with

α = 0.2 improves the misalignment level, paying with a slightly slower converge

rate. However, the IPAPA-BF using smaller step-sizes outperforms the conventional

algorithm, achieving a convergence rate similar to the IPAPA with α = 1, but reaching

a much lower misalignment level. This performance gain supports the discussion from

the end of Section 2.4.

Despite being intended for sparse impulse responses, the IPAPA-BF offers a good

performance also for less sparse echo paths. The different sparseness degrees can be
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ĝ
= 0.1

Figure 2.4: Performance of the IPAPA and IPAPA-BF in terms of NM for different
values of the normalized step-size parameters α, αĥ, and αĝ. The input signals are
AR(1) processes and ML = 2048.
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Figure 2.5: Performance of the APA-BF and IPAPA-BF in terms of NM. The input
signals are white Gaussian noises and ML = 2048.

30



Bilinear Forms (BF)

evaluated using a sparseness measure defined as [15]:

ξ12(h) =
L

L−
√
L

(
1− ‖h‖1√

L‖h‖2

)
, (2.72)

where ‖h‖1 =
∑L

l=1 |hl| is the `1 norm of the vector h =

[
h1 h2 . . . hL

]T
. If the

measure from (2.72) is close to 1, the impulse response is sparse. On the other hand,

if the measure is close to 0, it means that the impulse response is less sparse.

In Fig. 2.5, the NM provided by IPAPA-BF and APA-BF is shown when the

temporal impulse response is an echo path having the sparseness measure ξ12(h) =

0.6131. By comparison, the first impulse response from G168 recommendation [55],

which was used for all previous experiments, has the sparseness measure ξ12(h) =

0.897. It can be seen that the proportionate version IPAPA-BF outperforms APA-

BF in terms of convergence speed, leading to the conclusion that it may be appropriate

to use this version also for the less sparse impulse responses.

2.5 An Optimized LMS Algorithm for Bilinear

Forms (OLMS-BF)

In this subchapter, we approach the system identification problem based on the LMS

algorithm, aiming to optimize its step-size parameter in order to address the com-

promise between the main performance criteria, i.e., convergence rate versus misad-

justment [56]. In the following, the proposed OLMS-BF algorithm is derived based

on the same system model given in Section 2.1. As will be explained in Section 2.8,

this algorithm has striking resemblances with the SKF-BF, even if their derivations

follow different patterns. The development of the OLMS-BF algorithm presented in

the following was published in [21].
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Let us consider the two estimated impulse responses ĥ(n) and ĝ(n), such that the

estimated output signal is given by (2.38). As a consequence, the a priori error signal

between the desired signal and the estimated one can be defined following (2.39), i.e.,

e(n) = d(n)− ŷ(n)

= [g(n)⊗ h(n)]T x̃(n) + v(n)−
[
ĝ(n− 1)⊗ ĥ(n− 1)

]T
x̃(n)

= hT (n)xg(n) + v(n)− ĥT (n− 1)xĝ(n) (2.73)

= gT (n)xh(n) + v(n)− ĝT (n− 1)xĥ(n), (2.74)

where xg(n) = [g(n) ⊗ IL]T x̃(n) and xh(n) = [IM ⊗ h(n)]T x̃(n), while xĝ(n) and

xĥ(n) are defined in (2.42) and (2.43), respectively.

Next, we can define the a posteriori misalignments (which represent the state

estimation errors) related to the temporal and spatial impulse responses:

ch(n) =
1

η
h(n)− ĥ(n), (2.75)

cg(n) = ηg(n)− ĝ(n), (2.76)

for which their correlation matrices are Rch(n) = E[ch(n)cTh(n)] and Rcg(n) =

E[cg(n)cTg (n)], respectively. As mentioned in subchapter 2.1, we can only identify

the impulse responses up to this arbitrary scaling factor η; however, the pair h(n)/η

and ηg(n) is equivalent to the pair h and g in the bilinear form. Let us also define

the a priori misalignments related to the two impulse responses:

cha(n) =
1

η
h(n)− ĥ(n− 1) = ch(n− 1) +

1

η
wh(n), (2.77)

cga(n) = ηg(n)− ĝ(n− 1) = cg(n− 1) + ηwg(n), (2.78)

whose correlation matrices are Rcha
(n) = E

[
cha(n)cTha

(n)
]

and Rcga (n) =
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E
[
cga(n)cTga

(n)
]
, respectively. For the sake of simplicity of the upcoming devel-

opments, let us introduce the notation:

wh(n) =
1

η
wh(n), (2.79)

wg(n) = ηwg(n). (2.80)

These new terms are also zero-mean WGN vectors, having the correlation matrices

Rwh
(n) = σ2

wh
IL and Rwg(n) = σ2

wg
IM , respectively. Clearly, we have σ2

wh
= σ2

wh
/η2

and σ2
wg

= η2σ2
wg

.

The desired signal d(n) may also be expressed as

d(n) = gT (n)xh(n) + gT (n)xĥ(n)− gT (n)xĥ(n) + v(n)

= gT (n)xĥ(n) + v(n) + vg(n), (2.81)

where the term:

vg(n) = gT (n)
[
xh(n)− xĥ(n)

]
= cTha

(n)xg(n) = [ch(n− 1) + wh(n)]T xg(n) (2.82)

can be seen as an additional “noise” term, of variance σ2
vg(n), introduced by the

system g. In a similar way, for the second system we have

d(n) = hT (n)xg(n) + hT (n)xĝ(n)− hT (n)xĝ(n) + v(n)

= hT (n)xĝ(n) + v(n) + vh(n), (2.83)

where

vh(n) = hT (n) [xg(n)− xĝ(n)] = cTga
(n)xh(n) = [cg(n− 1) + wg(n)]T xh(n) (2.84)

can be interpreted as an additional “noise” term, of variance σ2
vh

(n), related to the
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Figure 2.6: Equivalent system identification scheme when considering the system g(n)
and the input xĥ(n).

system h. Here, the a posteriori and a priori misalignments corresponding to the

system g were defined in (2.76) and (2.78), respectively. In Figs. 2.6 and 2.7, the

equivalent system identification scheme is represented in terms of the two components,

g(n) and h(n), respectively; it can be observed that each system influences the other

one through the additional “noise” term. In the framework of the LMS-BF algorithm

[35], the updates are the following:

Figure 2.7: Equivalent system identification scheme when considering the system h(n)
and the input xĝ(n).
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ĝ(n) = ĝ(n− 1) + µĝxĥ(n)e(n), (2.85)

ĥ(n) = ĥ(n− 1) + µĥxĝ(n)e(n), (2.86)

where µĝ and µĥ are the step-size parameters. In this context, the vectors corre-

sponding to the a posteriori misalignments become

cg(n) = g(n)− ĝ(n− 1)− µĝxĥ(n)e(n)

= cg(n− 1) + wg(n)− µĝxĥ(n)e(n), (2.87)

ch(n) = h(n)− ĥ(n− 1)− µĥxĝ(n)e(n)

= ch(n− 1) + wh(n)− µĥxĝ(n)e(n). (2.88)

At this point, let us introduce the notation mg(n) = E [‖cg(n)‖2] and mh(n) =

E [‖ch(n)‖2]. Taking the square `2 norms in both sides of (2.87) and (2.88), respec-

tively, we can recursively evaluate

mg(n) = mg(n− 1)− 2µĝE
{[

cTg (n− 1) + wT
g (n)

]
xĥ(n)e(n)

}
+ µ2

ĝE
[
xT
ĥ

(n)xĥ(n)e2(n)
]

+Mσ2
wg

= mg(n− 1)− 2Agµĝ + µ2
ĝBg +Mσ2

wg
, (2.89)

mh(n) = mh(n− 1)− 2µĥE
{[

cTh(n− 1) + wT
h(n)

]
xĝ(n)e(n)

}
+ µ2

ĥ
E
[
xTĝ (n)xĝ(n)e2(n)

]
+ Lσ2

wh

= mh(n− 1)− 2Ahµĥ + µ2
ĥ
Bh + Lσ2

wh
, (2.90)

where
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Ag = E
{[

cTg (n− 1) + wT
g (n)

]
xĥ(n)e(n)

}
, (2.91)

Bg = E
[
xT
ĥ

(n)xĥ(n)e2(n)
]
, (2.92)

Ah = E
{[

cTh(n− 1) + wT
h(n)

]
xĝ(n)e(n)

}
, (2.93)

Bh = E
[
xTĝ (n)xĝ(n)e2(n)

]
. (2.94)

It is very difficult to further process the expectation terms from (2.91)–(2.94)

(and, consequently, (2.89) and (2.90)) without any supporting assumptions on the

character of the input signals. Hence, let us consider that the covariance matrices

of the inputs are close to a diagonal one. This is a fairly restrictive assumption on

the input signals, which has been widely used to simplify the convergence analysis

of many adaptive algorithms [56, 57]. Also, let us consider that the input signals

are independent and have the same power. In this context, the computations of the

expectation terms from (2.91)–(2.94), which are required in the development of (2.89)

and (2.90), are provided in the following.

First, based on (2.81), we can express the error as

e(n) = cTg (n− 1)xĥ(n) + wT
g (n)xĥ(n) + v(n) + vg(n)

= cTg (n− 1)xĥ(n) + wT
g (n)xĥ(n) + v(n) + cTh(n− 1)xg(n) + wT

h(n)xg(n).

(2.95)

Using this relation, together with (2.39) and (2.43), and taking into account that

cg(n− 1) and xĥ(n) are uncorrelated, the term from (2.91) results in
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Ag = E
{[

cTg (n− 1) + wT
g (n)

]
xĥ(n)e(n)

}
= E

{[
cTg (n− 1) + wT

g (n)
]
xĥ(n)

[
v(n) + wT

g (n)xĥ(n) + vg(n) + cTg (n− 1)xĥ(n)
]}

= pg(n) + E
[
cTg (n− 1)xĥ(n)xT

ĥ
(n)cg(n− 1) + wT

g (n)xĥ(n)xT
ĥ

(n)wg(n)
]

= pg(n) + tr
{
E
[
cg(n− 1)cTg (n− 1) + wg(n)wT

g (n)
]
E
[
xĥ(n)xT

ĥ
(n)
]}

= pg(n) +
[
mg(n− 1) +Mσ2

wg

]
E
[
xĥ(n)xT

ĥ
(n)
]
, (2.96)

where the term denoted by pg(n) is evaluated as

pg(n) = E
{
cTg (n− 1)xĥ(n)x̃T (n)[g ⊗ ch(n− 1)]

}
= E

{
cTg (n− 1)xĥ(n)cTh(n− 1)xg(n)

}
, (2.97)

and we took into account that cg(n− 1) and xĥ(n) are uncorrelated.

Next, we should concentrate on the last expectation term in (2.96), which can be

expressed as

E
[
xĥ(n)xT

ĥ
(n)
]

= E
{[

IM ⊗ ĥ(n− 1)
]T

x̃(n)x̃T (n)
[
IM ⊗ ĥ(n− 1)

]}
. (2.98)

The main diagonal terms of this matrix are E
[
ĥT (n− 1)xm(n)xTm(n)ĥ(n− 1)

]
, m =

1, 2, . . . ,M . In the following, we consider the assumption that the input signals are

independent and have the same power, while their covariance matrices are close to a

diagonal matrix [56, 57]. Consequently,where σ2
x = E [‖x̃(n)‖2].

E
[
ĥT (n− 1)xm(n)xTm(n)ĥ(n− 1)

]
= tr

{
E
[
xm(n)xTm(n)ĥ(n− 1)ĥT (n− 1)

]}
= tr

{
E
[
xm(n)xTm(n)

]
E
[
ĥ(n− 1)ĥT (n− 1)

]}
= σ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2] . (2.99)
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Finally, using (2.98) and (2.99) in (2.96), we obtain

Ag = pg(n) + σ2
xE
[∥∥∥ĥ(n− 1)

∥∥∥2] [mg(n− 1) +Mσ2
wg

]
. (2.100)

In a similar manner, the corresponding term from (2.93) is derived as

Ah = ph(n) + σ2
xE
[
‖ĝ(n− 1)‖2

] [
mh(n− 1) + Lσ2

wh

]
, (2.101)

where the term ph(n) is given by:

ph(n) = E
{
cTh(n− 1)xĝ(n)x̃T (n)[cg(n− 1)⊗ h]

}
= E

{
cTh(n− 1)xĝ(n)cTg (n− 1)xh(n)

}
. (2.102)

Further, we detail the evaluation of the expectation term from (2.92). To begin,

let us focus on the product xT
ĥ

(n)xĥ(n). Relying on the same considerations and

assumptions from (2.98) and (2.99), we obtain

xT
ĥ

(n)xĥ(n) = x̃T (n)
[
IM ⊗ ĥ(n− 1)

] [
IM ⊗ ĥ(n− 1)

]T
x̃(n)

= tr

{[
IM ⊗ ĥ(n− 1)

]T
x̃(n)x̃T (n)

[
IM ⊗ ĥ(n− 1)

]}
≈Mσ2

x

∥∥∥ĥ(n− 1)
∥∥∥2 . (2.103)

Similarly,

xTĝ (n)xĝ(n) ≈ Lσ2
x ‖ĝ(n− 1)‖2 . (2.104)

Hence, considering some degree of stationarity of the input signals, (2.103) can be

seen as a deterministic quantity, yielding
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Bg = E
[
xT
ĥ

(n)xĥ(n)e2(n)
]
≈Mσ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2]E [e2(n)
]
. (2.105)

Let us focus on the computation of the expectation term E [e2(n)]. Using (2.95),

we obtain

E
[
e2(n)

]
= σ2

v + E
[
wT

g (n)xĥ(n)xT
ĥ

(n)wg(n)
]

+ E
{[
vg(n) + xT

ĥ
(n)cg(n− 1)

] [
vg(n) + cTg (n− 1)xĥ(n)

]}
. (2.106)

Summarizing, the terms result in

Ag = pg(n) + σ2xE
[∥∥∥ĥ(n− 1)

∥∥∥2] [mg(n− 1) +Mσ2wg

]
, (2.107)

Ah = ph(n) + σ2xE
[
‖ĝ(n− 1)‖2

] [
mh(n− 1) + Lσ2wh

]
, (2.108)

Bg = Mσ2xE
[∥∥∥ĥ(n− 1)

∥∥∥2]{σ2v + 2pg(n) +
1

L
σ2vg(n) + σ2xE

[∥∥∥ĥ(n− 1)
∥∥∥2]

×
[
mg(n− 1) +Mσ2wg

]}
, (2.109)

Bh = Lσ2xE
[
‖ĝ(n− 1)‖2

]{
σ2v + 2ph(n) +

1

M
σ2vh(n) + σ2xE

[
‖ĝ(n− 1)‖2

]
×
[
mh(n− 1) + Lσ2wh

]}
. (2.110)

At this point, we need to evaluate the variance of vg, which can be developed as

σ2
vg(n) = E

[
v2g(n)

]
= E

{[
cTh(n− 1)xg(n) + wT

h(n)xg(n)
][

xTg (n)ch(n− 1) + xTg (n)wh(n)
]}

= E
[
cTh(n− 1)xg(n)xTg (n)ch(n− 1) + wT

h(n)xg(n)xTg (n)wh(n)
]

= tr
{
E
[
ch(n− 1)cTh(n− 1)

]
E
[
xg(n)xTg (n)

]
+ σ2

wh
E
[
xg(n)xTg (n)

]}
= E

[
‖xg(n)‖2

] {
Lσ2

wh
+ E

[
‖ch(n− 1)‖2

]}
= Lσ2

xE
[
‖g(n)‖2

] [
Lσ2

wh
+mh(n− 1)

]
. (2.111)
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Therefore, (2.106) results in

E
[
e2(n)

]
= σ2

v + σ2
x

[
Mσ2

wg
+mg(n− 1)

]
E
[∥∥∥ĥ(n− 1)

∥∥∥2]+
1

L
σ2
vg(n) + 2pg(n),

(2.112)

thus obtaining

Bg = Mσ2
xE
[∥∥∥ĥ(n− 1)

∥∥∥2]{σ2
v + 2pg(n) +

1

L
σ2
vg(n) + σ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2]
×
[
mg(n− 1) +Mσ2

wg

]}
. (2.113)

For the corresponding term from (2.94), we use the dual expression for e(n), which

leads to

E
[
e2(n)

]
= σ2

v + σ2
x

[
Lσ2

wh
+mh(n− 1)

]
E
[
‖ĝ(n− 1)‖2

]
+

1

M
σ2
vh

(n) + 2ph(n),

(2.114)

where [similar to (2.111)]

σ2
vh

(n) = E
[
v2h(n)

]
= Mσ2

xE
[
‖h(n)‖2

] [
Mσ2

wg
+mg(n− 1)

]
. (2.115)

Thus, we finally obtain

Bh = Lσ2
xE
[
‖ĝ(n− 1)‖2

]{
σ2
v + 2ph(n) +

1

M
σ2
vh

(n) + σ2
xE
[
‖ĝ(n− 1)‖2

]
×
[
mh(n− 1) + Lσ2

wh

]}
. (2.116)

Summarizing, we can use (2.100), (2.101), (2.113), and (2.116) in (2.89)–(2.90), in

order to obtain the recursive relations from (2.117)–(2.118), which are further used

in the development of the OLMS-BF algorithm.
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Consequently, using (2.107)–(2.110) in (2.89) and (2.90), we obtain

mg(n) = mg(n− 1)
{

1− 2µĝσ
2
xE
[
‖ĥ(n− 1)‖2

]
+ µ2

ĝσ
4
xM
{
E
[
‖ĥ(n− 1)‖2

]}2}
− 2µĝpg(n) + µ2

ĝMσ2
xE
[
‖ĥ(n− 1)‖2

]{
σ2
v +

1

L
σ2
vg(n)

+Mσ2
wg
σ2
xE
[
‖ĥ(n− 1)‖2

]
+ 2pg(n)

}
Mσ2

wg

{
1− 2µĝσ

2
xE
[
‖ĥ(n− 1)‖2

]}
,

(2.117)

mh(n) = mh(n− 1)
{

1− 2µĥσ
2
xE
[
‖ĝ(n− 1)‖2

]
+ µ2

ĥ
σ4
xL
{
E
[
‖ĝ(n− 1)‖2

]}2}
− 2µĥph(n) + µ2

ĥ
Lσ2

xE
[
‖ĝ(n− 1)‖2

]{
σ2
v +

1

M
σ2
vh

(n)

+ Lσ2
wh
σ2
xE
[
‖ĝ(n− 1)‖2

]
+ 2ph(n)

}
+ Lσ2

wh

{
1− 2µĥσ

2
xE
[
‖ĝ(n− 1)‖2

]}
.

(2.118)

In the context of system identification problems, the main goal is to reduce the sys-

tem misalignment, which basically represents the difference between the true impulse

response and the estimated one. Therefore, in our framework, the optimal step-size

parameters (denoted in the following by µĝ,o and µĥ,o) can be found by minimizing

(2.117) and (2.118). This is done by canceling the derivatives of (2.117) and (2.118)

with respect to the step-sizes, which result in:

∂mg(n)

∂µĝ

= −2Ag + 2Bgµĝ = 0⇒ µĝ,o =
Ag

Bg

, (2.119)

∂mh(n)

∂µĥ

= −2Ah + 2Bhµĥ = 0⇒ µĥ,o =
Ah

Bh

. (2.120)

By replacing Ag, Bg, Ah, and Bh with their expressions (see (2.107)–(2.110)), the

step-size parameters of the proposed OLMS-BF algorithm are found. Finally, intro-

ducing these parameters in (2.85) and (2.86), the updates of the OLMS-BF algorithm

become
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ĝ(n) = ĝ(n− 1) + µĝ,o(n)xĥ(n)e(n)

= ĝ(n− 1) +
xĥ(n)e(n)

Mσ2
xE
[
‖ĥ(n− 1)‖2

]{
1 +

pg(n)+σ2
v+

1
L
σ2
vg (n)

pg(n)+σ2
xE
[
‖ĥ(n−1)‖2

][
mg(n−1)+Mσ2

wg

]} ,
(2.121)

ĥ(n) = ĥ(n− 1) + µĥ,o(n)xĝ(n)e(n)

= ĥ(n− 1) +
xĝ(n)e(n)

Lσ2
xE
[
‖ĝ(n− 1)‖2

]{
1 +

ph(n)+σ2
v+

1
M
σ2
vh

(n)

ph(n)+σ2
xE
[
‖ĝ(n−1)‖2

][
mh(n−1)+Lσ2

wh

]} .
(2.122)

The most problematic terms in (2.121) and (2.122) are pg(n) and ph(n) (from

(2.97) and (2.102), respectively), which depend on the true impulse responses. How-

ever, as it will be shown in subchapter 2.8, these terms could be omitted in practice.

2.5.1 Experimental Results

Simulations were conducted in the context of system identification, in order to outline

the performance of the proposed OLMS-BF algorithm.

In the first set of experiments, the behavior of the OLMS-BF algorithm is analyzed,

as compared to the NLMS-BF algorithm [35]. The NLMS-BF algorithm uses different

values of its step-size parameters, αĥ and αĝ. The performances are now evaluated

in terms of both NPMs and NM, using both types of input signals as before [WGNs

and AR(1) processes]. The results are presented in Figs. 2.8 and 2.9, using WGNs as

inputs, and in Figs. 2.10 and 2.11, where the input signals are AR(1) processes. It can

be noticed that the proposed solution achieves similar convergence rate but a much

lower misalignment level than the NLMS-BF algorithm with αĥ = αĝ = 0.5 (which

provides the fastest convergence rate [35]). On the other hand, if we target a lower

misalignment and set the step-sizes of the NLMS-BF to smaller values (i.e., αĥ =

αĝ = 0.1 and αĥ = αĝ = 0.01), the convergence rate also decreases. However, the
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Figure 2.8: Normalized projection misalignment of the OLMS-BF and NLMS-BF
(using different step-size parameters): (top) identification of the temporal impulse
response h(n), (bottom) identification of the spatial impulse response g(n). The
input signals are WGNs, L = 64, and M = 8.

OLMS-BF algorithm leads to a misalignment level similar to the NLMS-BF algorithm

using the smallest step-sizes. In addition, when the input signals are AR(1) processes,

the improvement offered by the OLMS-BF algorithm is even more apparent.

Next, the performance of the OLMS-BF algorithm is evaluated along with the

joint-optimized NLMS (JO-NLMS) algorithm [58], which is applied for the identifica-

tion of the global impulse response of length ML = 512. The results are presented in

Figs. 2.12 and 2.13, using WGNs and AR(1) input signals, respectively. As specified

in Section 2.8.2, the JO-NLMS algorithm is the regular counterpart of the OLMS-BF

in a classical (one-dimensional) system identification scenario. We can see that the

proposed solution (tailored for BF, i.e., exploiting the two-dimensional decomposi-

tion) offers both faster convergence and tracking, as well as a lower misalignment, as

compared to the JO-NLMS algorithm. The performance improvement is even more

important in case of AR(1) input signals.
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Figure 2.9: Normalized misalignment of the OLMS-BF and NLMS-BF (using different
step-size parameters). The input signals are WGNs and ML = 512.
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Figure 2.10: Normalized projection misalignment of the OLMS-BF and NLMS-BF
(using different step-size parameters): (top) identification of the temporal impulse
response h(n), (bottom) identification of the spatial impulse response g(n). The
input signals are AR(1) processes, L = 64, and M = 8.
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Figure 2.11: Normalized misalignment of the OLMS-BF and NLMS-BF algorithms
(using different step-size parameters). The input signals are AR(1) processes and
ML = 512.
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Figure 2.12: Normalized misalignment of the OLMS-BF and regular JO-NLMS algo-
rithms. The input signals are WGNs and ML = 512.
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Figure 2.13: Normalized misalignment for the OLMS-BF and regular JO-NLMS al-
gorithms. The input signals are AR(1) processes and ML = 512.

Finally, to validate our approach, we assess the performance of the OLMS-BF

algorithm when applying it in a context which is closer to a real scenario. The

temporal impulse response h(n) is a real-world echo path of length L = 512. The

spatial impulse response g(n), of length M = 4, is generated using an exponential

decay with the elements gm = 0.5m, m = 1, . . . ,M . Both impulse responses are then

normalized such that ‖h(n)‖ = ‖g(n)‖ = 1. The input signal is an AR(1) process

and we compare the behaviors of the OLMS-BF and NLMS-BF algorithms. The

performance are illustrated in Figs. 2.14 and 2.15. We can notice that the proposed

solution slightly outperforms the fastest convergence rate of NLMS-BF, given by

αĥ = αĝ = 0.5, but at the same time offering a much lower value of the misalignment.

If, however, we use the NLMS-BF algorithm with the smaller step-sizes (in order to

obtain a better misalignment), the resulting convergence rate is much lower than the

one of the OLMS-BF algorithm.
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Figure 2.14: Normalized projection misalignment of the OLMS-BF and NLMS-BF
(using different step-size parameters): (top) identification of the temporal impulse
response h(n), (bottom) identification of the spatial impulse response g(n). The
input signals are AR(1) processes, L = 512, and M = 4.

2.6 On the Properties of the System Mismatch

Covariance Matrix (SMCM) in the LMS

Adaptive Algorithm

The developments layed out in this subchapter represent original contributions, which

were published in [22].

The SMCM is frequently encountered in the convergence analysis of gradient de-

scent adaptive algorithms [56, 57, 3, 59, 60, 61]. It also appears in some studies

concerning the optimization of variable step size LMS algorithms [58] or adaptive

algorithms based on the KF [16] and in the convergence analysis of such algorithms.

Some variable step-size algorithms are also based on the minimization of the mean

square system mismatch. Such studies require information about this specific matrix,
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Figure 2.15: Normalized projection misalignment for the OLMS-BF and NLMS-BF
algorithms. The input signals are AR(1) processes and ML = 2048.

and it is usually stated that after the algorithm has started to converge, the SMCM

tends to a scaled unit matrix. In this subchapter, we analyze the validity conditions

of this assumption and provide simulation results to support the theoretical findings.

2.6.1 A Recursive Equation for the SMCM

Let us start the analysis by considering an adaptive configuration aimed to estimate

the impulse response of an unknown system g of length N , having as input a wide-

sense-stationary signal x (n) = [x (n) , · · · , x (n−N + 1)]T . The desired signal is:

d (n) = gTx (n) + v (n) , (2.123)

where v (n) is the system noise. In a LMS-type adaptive algorithm with a step-size

parameter µ, the coefficients are updated according to [56]:
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ĝ (n) = ĝ (n− 1) + µx (n) ea (n) , (2.124)

where

ea (n) = d (n)− ĝT (n− 1) x (n) (2.125)

is the a priori error. The system mismatch is:

c (n) = g − ĝ (n) = c (n− 1)− µx (n) ea (n) . (2.126)

Hence, the a priori error can be also be expressed as:

ea (n) = gTx (n) + v (n)− ĝT (n− 1) x (n) = cT (n− 1) x (n) + v (n) . (2.127)

A recursive equation for the system mismatch results in:

c (n) = c (n− 1)− µx (n)
[
xT (n) c (n− 1) + v (n)

]
=
[
I− µx (n) xT (n)

]
c (n− 1)− µx (n) v (n) , (2.128)

where I is the identity matrix.

By definition, the SMCM is:

Rc(n),E
{
c (n) cT (n)

}
. (2.129)

This is a symmetric, positive semidefinite matrix. From this definition and relation

(2.128) it results that:

Rc(n) = E
{[

(I− µx (n) xT (n))c (n− 1)− µx (n) v (n)
]

×
[
cT (n− 1) (I− µx (n) xT (n) x (n))− µxT (n) v (n)

] }
. (2.130)

Next, let us consider the following set of assumptions:
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• v (n) - white noise, uncorrelated to x (n) and c (n− 1). Consequently:

Rc (n) = E
{ [

I− µx (n) xT (n)
]
c (n− 1) cT (n− 1)

[
I− µx (n) xT (n)

]
+ µ2x (n) xT (n) v2 (n)

}
= Rc (n− 1)− E

{
µx (n) xT (n) c (n− 1) cT (n− 1)

+ µc (n− 1) cT (n− 1) x (n) xT (n)

− µ2x (n) xT (n) c (n− 1) cT (n− 1) x (n) xT (n)
}

+ µ2σ2
vRx, (2.131)

where Rx is the correlation matrix of the input signal and σ2
v is the noise variance.

It is well-known that Rx is a symmetric, positive semidefinite matrix, containing on

the main diagonal the mean power of the process, denoted by σ2
x.

• x (n) and c (n− 1) uncorrelated. Consequently:

E
{
x (n) xT (n) c (n− 1) cT (n− 1)

}
=RxRc (n− 1) . (2.132)

• x (n) - zero mean Gaussian process. As a result (see [62]):

E
{
x (n) xT (n) c (n− 1) cT (n− 1) x (n) xT (n)

}
= 2RxRc (n− 1) Rx + Rxtr{Rc (n− 1) Rx}. (2.133)

In this way, Rc (n) becomes:

Rc(n) = Rc(n− 1)− µ[RxRc(n− 1) + Rc(n− 1)Rx] + µ2[2RxRc(n− 1)Rx

+ Rxtr{Rc(n− 1)Rx}] + µ2σ2
vRx. (2.134)

The above equation reveals the dependence of the SMCM on the correlation matrix

of the input signal, on the value of the step-size, and on the noise power.
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Then, the update equations for the matrix elements rci,j can be easily derived:

rci,j(n) = rci,j(n− 1)− µ
N−1∑
k=0

[ri,krck,j(n− 1) + rj,krci,k(n− 1)]

+ 2µ2

N−1∑
k,l=0

ri,krck,l(n− 1)rj,l + µ2ri,j[S(n− 1) + σ2
v ], (2.135)

where ri,j represent the elements of the matrix Rx and

S (n− 1),
N−1∑
k=0

N−1∑
i=0

[ri,krci,k (n− 1)] = vecdiagT {Rc (n− 1)} vecdiag{Rx}. (2.136)

In the relation above, the operator vecdiag{M} yields the vector formed with the

elements on the main diagonal of the matrix M.

An important observation here is that S (n− 1) is not a function of i or j.

In the end, we obtain:

rci,j(n) = [1− 2µσ2
x + 2µ2(σ4

x + r2i,j)]rci,j(n− 1)− µ
[N−1∑
k=0
k 6=i

ri,krck,j (n− 1)

+
N−1∑
k=0
k 6=j

rj,krci,k (n− 1)

]
+ 2µ2

N−1∑
k,l=0
k,l 6=i,j

ri,krck,l (n− 1) rj,l + µ2ri,j
[
S (n− 1) + σ2

v

]
.

(2.137)

2.6.2 Asymptotic Behavior

To characterize the SMCM after the convergence has been established, the limit when

n → ∞ is of interest. In this case, supposing the algorithm is convergent, equation

(2.137) leads to:
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2[σ2
x − µ(σ4

x + r2i,j)]rci,j(∞) = −
[N−1∑
k=0
k 6=i

ri,krck,j (∞) +
N−1∑
k=0
k 6=j

rj,krci,k(∞)

]

+ 2µ
N−1∑
k,l=0
k,l 6=i,j
k,l 6=j,i

ri,krck,l(∞)rj,l + µri,j[S(∞) + σ2
v ]. (2.138)

From here, it results that:

rci,j(∞) =
1

2
[
σ2
x − µ

(
σx4 + r2i,j

)][2µ N−1∑
k,l=0
k,l 6=i,j
k,l 6=j,i

ri,krck,l(∞)rj,l −
N−1∑
k=0
k 6=i

[
ri,krck,j(∞)

]

−
N−1∑
k=0
k 6=j

[rj,krci,k(∞)] + µri,j(S(∞) + σ2
v)

]
. (2.139)

Two statements have to be tested here:

1. Is rci,j(∞) = 0, ∀i 6= j , for any nonzero values of µ and σ2
v?

2. Do all rci,i(∞) have the same value, ∀i?

The answer to the first one is obvious. By observing the last term of the sum

from (2.139), it can be seen that rci,j(∞) could be zero for any nonzero σ2
v only if µ

or ri,j, i 6= j are zero.

For the second statement, it would be necessary for

rci,i(∞) =
1

2σ2
x (1− 2µσ2

x)

[
− 2

N−1∑
k=0
k 6=i

ri,krck,i(∞) + 2µ
N−1∑
k,l=0
k,l 6=i,i

ri,krck,l(∞)ri,l

+ µσ2
x

(
S(∞) + σ2

v

) ]
(2.140)

not to depend on i. In fact, the sum of the first two terms from the square bracket

should not depend on i. This condition is not fulfilled in general.
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2.6.3 Case Studies: White Noise and Autoregressive Input

Signals

The next step is to characterize the SMCM for two of the most encountered types of

stationary signals used for system identification problems: the white noise and the

AR input signals.

White noise

In the case when the input signal is white noise, its correlation matrix is of the form:

Rx=σ2
xI, (2.141)

hence:

Rc(n) = Rc(n− 1)− 2µσ2
xRc(n− 1) + µ2σ4

x[2Rc (n− 1) + I tr{Rc (n− 1)}]

+ µ2σ2
vσ

2
xI. (2.142)

After reaching convergence:

Rc (∞) = Rc (∞)− 2µσ2
xRc (∞) + µ2σ4

x[2Rc (∞) + I tr {Rc (∞)}] + µ2σ2
vσ

2

xI.

(2.143)

It follows that:

Rc (∞) =
µ [σ2

x tr {Rc (∞)}+ σ2
v ]

2 [1− µσ2
x]

I (2.144)

and consequently,

tr {Rc (∞)} =
µ [σ2

xtr {Rc (∞)}+ σ2
v ]

2[1− µσ2
x]

N = m (∞) =
µNσ2

v

2− (N + 2)µσ2
x

. (2.145)

Therefore, in this case, the SMCM tends to a scaled unit matrix.

53



Adaptive Algorithms for Multilinear in Parameters Structures

Autoregressive Process

Next, let us consider as input a first-order AR process, described by:

x (n) = αx (n− 1) + w (n) , 0 < α ≤ 1, (2.146)

where w (n) is a zero mean WGN signal with variance σ2
w. In this case, it can be

easily shown that:

ri,j = σ2
w

α|i−j|

1− α2
= σx

2α|i−j|, (2.147)

where σ2
x = σ2

w

1−α2 . Therefore, after reaching convergence:

rci,j (∞) =
1

2[σ2
x − µσ4

x (1 + α2|i−j|)]

{
2µσ4

x

N−1∑
k,l=0
k,l 6=i,j
k,l 6=j,i

α|i−k|+|j−l|rck,l (∞)

− σ2
x

N−1∑
k=0
k 6=i

α|i−k|rck,j (∞)− σ2
x

N−1∑
k=0
k 6=j

[
α|j−k|rci,k (∞)

]
+ µσ2

xα
|i−j|[

S (∞) + σ2
v

]}
.

(2.148)

In this way:

S (∞),
N−1∑
k=0

N−1∑
l=0

[
rl,krcl,k (∞)

]
= σ2

x

N−1∑
k=0

N−1∑
l=0

[
α|l−k|rcl,k (∞)

]
. (2.149)

As shown in subchapter 2.6.2, rci,j(∞) for any i 6= j are not generally zero for a

nonzero value of the step size and external noise. Moreover, the elements of the main

diagonal:

rci,i(∞) =
1

2σ2(1− σ2
xµ)

{
2µσ4

x

N−1∑
k,l=0
k,l 6=i,j

α|i−k|+|i−l|rck,l(∞)− 2σ2
x

N−1∑
k=0
k 6=i

[α|i−k|rci,k(∞)]

+ µσ2
x[S(∞) + σ2

v ]

}
(2.150)
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are in general distinct, because of the first two sums.

2.6.4 Experimental Results

Finally, we aim to provide the outcomes of simulations, which prove once again the

results reached through analytical computations in the previous sections.

First, the correlation matrix of the input signal Rx is plotted for three cases of

possible inputs: α = 0 (white noise), α = 0.95 (AR signal), and α = 0.99 (strongly

correlated AR process), respectively. The variance of the process is σ2
x = 0.1 and the

length of the filter is N = 100.

As it is well-known, the spread of nonzero elements outside the main diagonal

increases with the degree of correlation (as α increases from 0 to 0.99). This fact is

illustrated for the matrices of dimension N ×N in Fig. 2.16.

In Fig. 2.17, the evolution of the trace of the SMCM, normalized to the first value,

is represented in logarithmic scale for the first 105 iterations of the algorithm, for the

same three types of input signals as before, allowing the evaluation of the convergence

process. The step-size value is µ = 0.01, the noise power is σ2
v = 0.02, and all the

other parameters are kept the same. Of course, the convergence process is slower for

the highly correlated input signal.

Next, the SMCM is represented in Fig. 2.18 for the same types of input signals

after 104 iterations of the algorithm (such that the algorithm is close to convergence,

but it has not converged yet), and respectively in Fig. 2.19, after 105 iterations (such

that it reached convergence), under the same previous conditions.

It can be noticed from Figs. 2.18a and 2.19a that:

• the elements outside the main diagonal are all equal,

• they have a significantly smaller value than the ones on the main diagonal,

confirming the theoretical results from (2.144).
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(a) white noise. (b) AR signal with α = 0.95.

(c) AR signal with α = 0.99.

Figure 2.16: The correlation matrix, Rx, for three types of input signals.

These two observations, however, are exactly valid only for the white noise input.

As the correlation degree of the input signal increases, the value of the non-zero

elements outside the main diagonal becomes higher. In the case of correlated signals,

the two assumptions can be made only in the case of low noise and for a small step-size.

However, this is more visible during the convergence phase, when the steady-state is

not completely reached (see Fig. 2.18). The differences with respect to the scaled

unity matrix model decrease with the number of iterations (see Fig. 2.19), without

being completely canceled.

The elements on the main diagonal of the SMCM, rci,i , are also of interest. Their

values in the convergence regime are represented in Fig. 2.20, where all the param-
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Figure 2.17: The evolution of the trace of the SMCM, normalized to the first value,
in dB, for three types of input signals

eters of the simulation are the same as for Fig. 2.19. As expected, in the case of

white noise, the graphical representation is constant, because, as it was proved in

subchapter 2.6.3, these elements are all equal. On the other hand, we can see that

for the AR signals, despite the symmetry of the representations, these elements are

not all equal, but instead they present some changes in their values, which was also

shown in subchapter 2.6.3.

In Fig. 2.21, the same elements are represented, but this time for a larger step-size,

µ = 0.02, thus revealing their increasing behavior with the step size.

In Figs. 2.22 and 2.23 we can see the evolution of the elements on the first line

of the SMCM after 104, respectively 105 iterations of the algorithm. The simulation

parameters are the same as for Figs. 2.18 and 2.19.
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(a) white noise. (b) AR signal with α = 0.95.

(c) AR signal with α = 0.99.

Figure 2.18: The SMCM for three types of input signals after 104 iterations of the
algorithm

2.7 Kalman Filter for the Identification of Bilinear

Forms (KF-BF)

In this section, we address the BF system identification problem using the KF. We

start by developing the general form of this algorithm in subchapter 2.7.1, and then

continue with a computationally simplified version in subchapter 2.7.2, highlighting

the gain offered in terms of complexity, but also the compromise in terms of perfor-

mance. In the end, we provide a comparison between the KF and the OLMS algorithm

for BF, highlighting some interesting aspects which connect the two algorithms. The

developments presented here were published in [19, 22].
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(a) white noise. (b) AR signal with α = 0.95.

(c) AR signal with α = 0.99.

Figure 2.19: The SMCM for three types of input signals after 105 iterations of the
algorithm

2.7.1 Kalman Filter for Bilinear Forms (KF-BF)

In the framework of the KF, the signal model from (2.1) may be interpreted as the

observation equation, while the system impulse responses can be considered as state

equations. Given the two adaptive filters ĥ(n) and ĝ(n), the estimated signal has the

expression derived in relation (2.38). As a result, the a priori error signal between

the desired and estimated signals can be defined as
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Figure 2.20: The elements on the main diagonal of the SMCM for three types of input
signals, when µ = 0.01

Figure 2.21: The elements on the main diagonal of the SMCM for three types of input
signals, when µ = 0.02
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Figure 2.22: The elements on the first line of the SMCM for three types of input
signals after 104 iterations of the algorithm

Figure 2.23: The elements on the first line of the SMCM for three types of input
signals after 105 iterations of the algorithm
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e(n) = d(n)− ŷ(n)

= d(n)− ĥT (n− 1)X(n)ĝ(n− 1)

= d(n)−
[
ĝ(n− 1)⊗ ĥ(n− 1)

]T
x̃(n)

= d(n)− f̂T (n− 1)x̃(n)

= d(n)− ĥT (n− 1)xĝ(n)

= d(n)− ĝT (n− 1)xĥ(n), (2.151)

where

xĝ(n) = [ĝ(n− 1)⊗ IL]T x̃(n), (2.152)

xĥ(n) = [IM ⊗ ĥ(n− 1)]T x̃(n). (2.153)

In the context of the linear sequential Bayesian approach, the optimal estimates

of the state vectors have the forms [63]:

ĥ(n) = ĥ(n− 1) + kh(n)e(n), (2.154)

ĝ(n) = ĝ(n− 1) + kg(n)e(n), (2.155)

where kh(n) and kg(n) are the Kalman gain vectors.

In the following, we will use the a posteriori misalignments corresponding to the

two system impulse responses, which were defined in subchapter 2.5 [relations (2.75),

(2.76)]. We will also need to use the a priori misalignment terms, defined by (2.77),

(2.78). Consequently, we obtain

Rcha
(n) = Rch(n− 1) + σ2

wh
IL, (2.156)

Rcga (n) = Rcg(n− 1) + σ2
wg

IM . (2.157)
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In this context, the Kalman gain vectors are computed from the minimization of

the criteria:

Jh(n) =
1

L
tr [Rch(n)] , (2.158)

Jg(n) =
1

M
tr
[
Rcg(n)

]
, (2.159)

with respect to kh(n) and kg(n), respectively. From these minimizations, we find

that

kh(n) =
Rcha

(n)xĝ(n)

xTĝ (n)Rcha
(n)xĝ(n) + σ2

v

, (2.160)

kg(n) =
Rcga (n)xĥ(n)

xT
ĥ

(n)Rcga (n)xĥ(n) + σ2
v

, (2.161)

and

Rch(n) =
[
IL − kh(n)xTĝ (n)

]
Rcha

(n), (2.162)

Rcg(n) =
[
IM − kg(n)xT

ĥ
(n)
]
Rcga (n). (2.163)

Summarizing, the KF for BF (namely KF-BF) is defined by equations (2.154),

(2.155), (2.156), (2.157), and (2.160)–(2.163). As we can notice, the computational

complexity of this algorithm is proportional to O(L2 +M2).

2.7.2 Simplified Kalman Filter for Bilinear Forms (SKF-BF)

Next, in order to reduce the computational complexity of the KF-BF, a simplified

version of this algorithm is derived. The idea of this low complexity algorithm is in-

spired by the work developed in [16], in the context of echo cancellation. To begin, let

us assume that the KF-BF has converged to its steady-state. Consequently, Rcha
(n)

and Rcga (n) tend to become diagonal matrices, which have all the elements on the

63



Adaptive Algorithms for Multilinear in Parameters Structures

main diagonal equal to small positive numbers, σ2
cha

(n) and σ2
cga

(n), respectively.

Therefore, we can use the approximations:

Rcha
(n) ≈ σ2

cha
(n)IL, (2.164)

Rcga (n) ≈ σ2
cga

(n)IM . (2.165)

Hence, the Kalman gain vectors for the temporal and spatial impulse responses be-

come

kh(n) =
xĝ(n)

xTĝ (n)xĝ(n) + δh(n)
, (2.166)

kg(n) =
xĥ(n)

xT
ĥ

(n)xĥ(n) + δg(n)
, (2.167)

where δh(n) = σ2
v/σ

2
cha

(n) and δg(n) = σ2
v/σ

2
cga

(n) can be seen as variable regulariza-

tion parameters. Then, we use the Kalman vectors from (2.166) and (2.167) in the

updates (2.154) and (2.155), respectively.

Next, a new simplification can be made, by considering that the matrices appear-

ing in the updates of Rch(n) and Rcg(n) can be approximated as

IL − kh(n)xTĝ (n) ≈
[
1− 1

L
kTh(n)xĝ(n)

]
IL, (2.168)

IM − kg(n)xT
ĥ

(n) ≈
[
1− 1

M
kTg (n)xĥ(n)

]
IM . (2.169)

We can perform these approximations because, as the filters start to converge, the

misalignments of the individual coefficients tend to become uncorrelated; due to this

fact, the matrices Rch(n) and Rcg(n) tend to become diagonal. Using the notation:

Rcha
(n) ≈ σ2

cha
(n)IL = rcha

(n)IL,

Rcga (n) ≈ σ2
cga

(n)IM = rcga (n)IM , (2.170)
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together with

Rch(n) ≈ σ2
ch

(n)IL = rch(n)IL,

Rcg(n) ≈ σ2
cg(n)IM = rcg(n)IM , (2.171)

we can summarize the SKF-BF in Table 2.1. As we can notice, its computational

complexity is proportional to O(L + M), which represents an important gain as

compared to KF-BF.

Table 2.1: Simplified Kalman filter for bilinear forms (SKF-BF).

Initialization:

ĥ(0) = [1 0 . . . 0]T , ĝ(0) = 1
M

[1 1 . . . 1]T

rch(0) = εh, rcg(0) = εg (positive constants)

Parameters: σ2
wh
, σ2

wg
, σ2

v known or estimated

Algorithm:

rcha
(n) = rch(n− 1) + σ2

wh
(n)

rcga (n) = rcg(n− 1) + σ2
wg

(n)

δh(n) = σ2
v

rcha
(n)

δg(n) = σ2
v

rcga (n)

e(n) = d(n)− xTĝ (n)ĥ(n− 1) = d(n)− xT
ĥ

(n)ĝ(n− 1)

ĥ(n) = ĥ(n− 1) +
xĝ(n)e(n)

xT
ĝ
(n)xĝ(n)+δh(n)

ĝ(n) = ĝ(n− 1) +
x
ĥ
(n)e(n)

xT
ĥ
(n)x

ĥ
(n)+δg(n)

rch(n) =

{
1− xT

ĝ
(n)xĝ(n)

L[xT
ĝ
(n)xĝ(n)+δh(n)]

}
rcha

(n)

rcg(n) =

{
1−

xT
ĥ
(n)x

ĥ
(n)

M[xT
ĥ
(n)x

ĥ
(n)+δg(n)]

}
rcga (n)

2.7.3 Experimental Results

Experiments are performed in the context of system identification, in order to high-

light the performance of the Kalman-based algorithms for BF (KF-BF and SKF-BF),
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in comparison with their regular counterparts (KF and SKF). The temporal and the

spatial impulse responses are randomly generated from a Gaussian distribution, hav-

ing the lengths equal to L = 64 and M = 8, respectively. This leads to a length of

the spatiotemporal impulse response equal to ML = 8× 64 = 512. It is also useful to

evaluate the tracking capabilities of the algorithms; to this purpose, a sudden change

in the temporal impulse response is applied in the middle of simulations, by generat-

ing a new random vector of length L = 64, also from a Gaussian distribution. The

input signals xm(n), m = 1, 2, . . . ,M are either WGNs or AR(1) processes [which

were obtained after passing a WGN through a first-order system with the transfer

function 1/ (1− 0.8z−1)]. The additive noise v(n) is white and Gaussian, having the

variance σ2
v = 0.01; we assume that this parameter is available in the experiments.

The performance measure is the NM (in dB) [see (2.10)], to evaluate the identification

of the global impulse response.

In Figs. 2.24 and 2.25, the KF-BF is compared to the regular KF for WGN and

AR(1) input signals, respectively. The specific parameters of the algorithms are set

to σ2
wh

= σ2
wg

= σ2
w = 10−9. It can be noticed from both figures that the KF-BF

achieves a faster convergence rate as compared to the regular KF, for both types

of input signals, providing also a better tracking capability. The gain is even more

apparent in case of AR(1) inputs.

The previous experiment is repeated (for the same two types of inputs) in

Figs. 2.26 and 2.27, this time comparing the SKF-BF with the regular SKF [16].

As it can be observed, the simplified versions (SKF-BF and SKF) yield a slower

convergence rate [especially in case of AR(1) inputs] as compared to the full versions

(KF-BF and KF, respectively); however, the computational complexities for these

simplified versions are much lower. As it was expected, the SKF-BF outperforms the

regular SKF in terms of the convergence rate; the improvement is much more visible

in the case of AR(1) inputs.
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Figure 2.24: Normalized misalignment of the KF-BF and regular KF using WGNs as
input signals. The length of the global impulse response is ML = 512. The specific
parameters are set to σ2

wh
= σ2

wg
= σ2

w = 10−9.
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Figure 2.25: Normalized misalignment of the KF-BF and regular KF using AR(1)
processes as input signals. The length of the global impulse response is ML = 512.
The specific parameters are set to σ2

wh
= σ2

wg
= σ2

w = 10−9.
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Figure 2.26: Normalized misalignment of the SKF-BF and regular SKF using WGNs
as input signals. The length of the global impulse response is ML = 512. The specific
parameters are set to σ2

wh
= σ2

wg
= σ2

w = 10−9.
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Figure 2.27: Normalized misalignment of the SKF-BF and regular SKF using AR(1)
processes as input signals. The length of the global impulse response is ML = 512.
The specific parameters are set to σ2

wh
= σ2

wg
= σ2

w = 10−9.
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Figure 2.28: Normalized misalignment of the SKF-BF and regular SKF (for WGNs
input signals), using the recursive estimates σ̂2

wh
(n) and σ̂2

w(n), respectively; the SKF-
BF uses σ2

wg
= 0. The length of the global impulse responses is ML = 512.

Next, the performance of the SKF-BF is evaluated in Figs. 2.28 and 2.29, but

instead of using a constant value for σ̂2
wh

(n), as in the previous experiments, we employ

a recursive estimation of this parameter, namely σ̂2
wh

(n) = 1
L

∥∥∥ĥ(n)− ĥ(n− 1)
∥∥∥2. The

motivation for this choice will be provided in subchapter 2.8.1, which is dedicated to

a discussion on the estimation of this parameter. The spatial impulse response is

assumed to be time invariant, so that we can set σ2
wg

= 0. The regular SKF is

considered for comparison, using a similar way to estimate its specific parameter, i.e.,

σ̂2
w(n) = 1/(ML)

∥∥∥f̂(n)− f̂(n− 1)
∥∥∥2 [16]. Because of the nature of the estimators (as

it will be explained in 2.8.2), the algorithms behave like variable step-size adaptive

filters, achieving both low misalignment and fast convergence/tracking. Moreover,

as we can notice from these two figures, the proposed SKF-BF still outperforms the

regular SKF in terms of both performance criteria.

69



Adaptive Algorithms for Multilinear in Parameters Structures

0 2 4 6 8 10 12 14

Iterations 104

-80

-70

-60

-50

-40

-30

-20

-10

0

10

SKF-BF

Regular SKF

Figure 2.29: Normalized misalignment of the SKF-BF and regular SKF (for AR(1)
input signals), using the recursive estimates σ̂2

wh
(n) and σ̂2

w(n), respectively; the SKF-
BF uses σ2

wg
= 0. The length of the global impulse responses is ML = 512.

2.8 A Connection Between the Kalman Filter and

the Optimized LMS Algorithm for Bilinear

Forms

The SKF-BF and OLMS-BF algorithms were developed following different theoretical

patterns. However, there are strong similarities between these two algorithms, as will

be explained in this section, which contains information published in [22].

The update equations of the SKF-BF are given by (2.154) and (2.155), where the

Kalman gain vectors have the expressions in (2.166) and (2.167). It can be noticed

that the updates of the SKF-BF can be expressed as

ĝ(n) = ĝ(n− 1) + µĝ,K(n)xĥ(n)e(n), (2.172)

ĥ(n) = ĥ(n− 1) + µĥ,K(n)xĝ(n)e(n), (2.173)
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where the Kalman step-size parameters are

µĝ,K(n) =
1

xT
ĥ

(n)xĥ(n)

{
1 + Mσ2

v[
mg(n−1)+Mσ2

wg

]
xT
ĥ
(n)x

ĥ
(n)

} , (2.174)

µĥ,K(n) =
1

xTĝ (n)xĝ(n)

{
1 + Lσ2

v[
mh(n−1)+Lσ2

wh

]
xT
ĝ
(n)xĝ(n)

} . (2.175)

Comparing these parameters with the optimal step-sizes from (2.121) and (2.122)

(also taking (2.103) and (2.104) into account), we can notice striking resemblances

between SKF-BF and OLMS-BF. In fact, these two algorithms are very similar when

pg = ph = 0. (2.176)

On the other hand, as it was indicated in [35], this could represent a reasonable

assumption, since

lim
n→∞

pg(n) = lim
n→∞

ph(n) = 0, (2.177)

suggesting that in the steady-state of the algorithm, the influence of the terms ph

and pg on the step-size parameters diminishes. As will be supported in simulations,

(2.176) can be fairly imposed within the OLMS-BF algorithm, while still leading to a

very good compromise between the performance criteria (e.g., convergence rate versus

misadjustment). Under these considerations, the OLMS-BF algorithm is summarized

in Table 2.2 (in a practical form that facilitates its implementation).
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Table 2.2: Optimized LMS algorithm for bilinear forms (OLMS-BF) (practical ver-
sion, i.e., using (2.176)).

Initialization:

ĥ(0) = [1 0 . . . 0]T , ĝ(0) = 1
M

[1 1 . . . 1]T

mh(0) = εh, mg(0) = εg (positive constants)

Parameters: E
[
‖h(n)‖2

]
, E
[
‖g(n)‖2

]
, σ2

wh
, σ2

wg
, σ2

v known or estimated

Algorithm:

σ2
vh

(n) = Mσ2
xE
[
‖h(n)‖2

] [
mg(n− 1) +Mσ2

wg

]
σ2
vg(n) = Lσ2

xE [‖g(n)‖2]
[
mh(n− 1) + Lσ2

wh

]
Ah = σ2

xE
[
‖ĝ(n− 1)‖2

] [
mh(n− 1) + Lσ2

wh

]
Bh = Lσ2

xE
[
‖ĝ(n− 1)‖2

] {
σ2
v + 1

M
σ2
vh

(n) + σ2
xE
[
‖ĝ(n− 1)‖2

] [
mh(n− 1) + Lσ2

wh

]}
Ag = σ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2] [mg(n− 1) +Mσ2
wg

]
Bg = Mσ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2]{σ2
v + 1

L
σ2
vg(n) + σ2

xE
[∥∥∥ĥ(n− 1)

∥∥∥2] [mg(n− 1) +Mσ2
wg

]}
µĥ,o = Ah

Bh

µĝ,o = Ag

Bg

e(n) = d(n)− xTĝ (n)ĥ(n− 1) = d(n)− xT
ĥ

(n)ĝ(n− 1)

ĥ(n) = ĥ(n− 1) + µĥ,oxĝ(n)e(n)

ĝ(n) = ĝ(n− 1) + µĝ,oxĥ(n)e(n)

mh(n) = mh(n− 1)− 2Ahµĥ,o + µ2
ĥ,o
Bh + Lσ2

wh

mg(n) = mg(n− 1)− 2Agµĝ,o + µ2
ĝ,oBg +Mσ2

wg

2.8.1 Noise Variance Estimation

Next, a few important observations ought to be made regarding the specific parame-

ters that must be set within the algorithms. Here, the noise power σ2
v is required in

order to compute the Kalman gain vectors (for KF-BF and SKF-BF) or the optimal

step-sizes (for OLMS-BF). In practice, we can estimate this parameter in different

ways; some simple and efficient methods for this purpose are presented in [64, 65].
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The parameters related to the uncertainties in the unknown systems also need to

be set or estimated, i.e., σ2
wh

and σ2
wg

. Choosing small values for these parameters

yields a small misalignment, but at the same time a poor tracking. On the other hand,

large values (meaning that there are high uncertainties in the unknown systems) lead

to a good tracking but also a high misalignment. This means that we always need

to have a good compromise between fast tracking and low misalignment. In practice,

if we have some a priori information about the systems which we need to identify,

we can take it into consideration when setting the values of these parameters. For

example, if we assume the spatial impulse response to be time-invariant, we could

fix σ2
wg

= 0 and tune only the parameter related to the temporal impulse response.

Thus, based on the state equation related to h(n), together with the approximation

‖wh(n)‖2 ≈ Lσ2
wh

(which is valid when L� 1), and replacing h(n) and h(n− 1) by

their estimates, we can evaluate

σ̂2
wh

(n) =
1

L

∥∥∥ĥ(n)− ĥ(n− 1)
∥∥∥2 . (2.178)

It can be noticed that the estimation from (2.178) is designed to achieve a proper

compromise between good tracking and low misalignment. When the algorithm starts

to converge or when there is an abrupt change of the system, the difference between

ĥ(n) and ĥ(n−1) is significant, leading to large values of the parameter σ̂2
wh

(n), there-

fore providing fast convergence and tracking. On the contrary, when the algorithm

is converging to its steady-state, the difference between ĥ(n) and ĥ(n − 1) reduces,

thus leading to the parameter σ̂2
wh

(n) taking small values and, consequently, to a low

misalignment.
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2.8.2 Computational Complexity

The previously developed algorithms are designed to identify the individual impulse

responses of the bilinear form. The global (spatiotemporal) impulse response can be

computed based on the Kronecker product between them. An alternative solution is

to use the regular KF to identify the spatiotemporal impulse response directly, relying

on the observation (2.4) and identifying the state equation:

f(n) = f(n− 1) + w(n), (2.179)

where w(n) is a zero-mean WGN signal vector. The covariance matrix of w(n) is

Rw(n) = σ2
wIML, where IML is the identity matrix of size ML×ML and the variance

σ2
w captures the uncertainties in f(n).

In this way, following the approach from [16], we can easily derive the regular KF

(KF) and its simplified version (namely SKF), which can identify the global impulse

response using a single adaptive filter f̂(n); for further details, please see Sections VI

and VII in [16]. However, we need to mention that the solution found using the regular

KF and SKF involves an adaptive filter of length ML, whereas their counterparts

tailored for BF (i.e., KF-BF and SKF-BF) use two shorter filters of lengths L and

M , respectively. As a consequence, besides a lower computational complexity, a

much faster converge rate and tracking are expected for the bilinear algorithms with

respect to the conventional ones. The same ideas apply for the OLMS-BF algorithm,

as compared to its regular counterpart, i.e., the JO-NLMS algorithm [58], which could

be used to identify the global impulse response f̂(n).

The computational complexity of the previously discussed algorithms is summa-

rized in Table 2.3. It can be easily seen that the SKF-BF offers a great reduction

in terms of complexity with respect to KF-BF. Also, the SKF-BF and OLMS-BF

differ only by a small number of operations, thus confirming the similarity that was
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highlighted in subchapter 2.8. Finally, when ML � M + L (which is usually the

case in practice), we can notice that the algorithms tailored for BF (namely KF-BF,

SKF-BF, and OLMS-BF) offer lower computational complexities as compared to their

regular counterparts (i.e., KF, SKF, and JO-NLMS, respectively).

Table 2.3: Computational complexity of the algorithms.

Algorithms × + /

KF-BF [19] 3(L2+M2)+2ML+3L+4M 2(L2+M2)+2ML+L+2M 2

KF [16] 3(ML)2 + 4ML 2(ML)2 + 3ML 1

SKF-BF

(Table 2.1)

2ML+ 2L+ 3M + 6 2ML+ L+ 2M + 4 2

SKF [16] 3ML+ 6 3ML+ 4 1

OLMS-BF

(Table 2.2)

2ML+ 2L+ 3M + 12 2ML+ L+ 2M + 8 2

JO-NLMS [58] 3ML+ 6 3ML+ 5 1

2.8.3 Experimental Results

We performed experiments in order to outline the strong similarities between the SKF-

BF and OLMS-BF algorithms. In Figs. 2.30 and 2.31, we compare the performances

of these algorithms using two types of input signals, i.e., WGNs and AR(1) processes,

respectively. Both algorithms use the recursive estimate σ̂2
wh

(n) [from (2.178)] and

σ2
wg

= 0. As we can notice, the SKF-BF and OLMS-BF algorithms behave quite

similar, especially when the input signals are WGNs (Fig. 2.30). When the input

signals are AR(1) processes (Fig. 2.31), the SKF-BF outperforms the OLMS-BF in

terms of the initial convergence rate; however, it pays with a slower tracking reac-

tion. Nevertheless, the overall performances of these algorithms are very similar, as

supported by the comparison provided before in this subchapter.
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Figure 2.30: Normalized misalignment of the SKF-BF and OLMS-BF algorithms
using WGNs as input signals. Both algorithms use the recursive estimate σ̂2

wh
(n) and

σ2
wg

= 0. The length of the global impulse responses is ML = 512.
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Figure 2.31: Normalized misalignment of the SKF-BF and OLMS-BF algorithms
using AR(1) processes as input signals. Both algorithms use the recursive estimate
σ̂2
wh

(n) and σ2
wg

= 0. The length of the global impulse responses is ML = 512.
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2.9 Summary and Conclusions

In Chapter 2, we started by reviewing the existing advances in the context of system

identification of BF. After thoroughly defining the way in which BF are understood

(in the context of a spatiotemporal model) and the system model in 2.1, along with the

already existing Wiener filter and LMS-type adaptive algorithms in 2.2 and 2.3, we

continued by introducing the original contributions. Subchapter 2.4 presented a pro-

portionate APA tailored for the identification of sparse BF, namely IPAPA-BF. This

algorithm follows the line of the celebrated IPNLMS algorithm [48], in terms of com-

puting the proportionate factors. The IPAPA-BF outperforms its non-proportionate

counterpart, APA-BF, especially in terms of convergence rate. In addition, the pro-

posed IPAPA-BF outperforms the regular IPAPA, achieving a faster convergence rate

but also a lower computational complexity. Simulation results indicated the appeal-

ing performance of the proposed algorithm, in the context of bilinear sparse system

identification.

The mathematical derivation of the OLMS-BF algorithm was conducted in 2.5,

following an optimization of the step-size parameter value. Experimental results

indicate that the proposed algorithm outperforms both the NLMS-BF and JO-NLMS

algorithms, yielding to the conclusion that it can be successfully used for bilinear

system identification problems.

In subchapter 2.6 we proved, both analytically and by simulations, that the state-

ment ”after the algorithm has started to converge, the SMCM tends to a scaled unit

matrix” is rigorously valid only for a white noise input signal. In the case of a cor-

related input signal, the elements outside the main diagonal have nonzero values,

which increase with the increase of the external noise power and step size. At the

same time, a certain variation of the elements on the main diagonal occurs. It can be

roughly stated that the lower the autocorrelation of the input signal is, the better is

the validity of the above assumption.
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Next, in 2.7, we have presented the KF tailored for the identification of BF (namely

KF-BF), where the bilinear term has been defined with respect to the impulse re-

sponses of the spatiotemporal model. We further derived a simplified version of this

algorithm, referred to as SKF-BF, which offers a reduced computational complex-

ity; the price to pay is a slower convergence rate, especially for correlated inputs.

Simulation results indicated that the proposed algorithms could represent appealing

solutions for such bilinear system identification problems.

In 2.8 it was shown that the SKF-BF and OLMS-BF algorithms perform very

similarly. Experimental results also indicate that the algorithms tailored for BF

outperform their regular counterparts (in such two-dimensional system identification

scenarios), in terms of both convergence rate and tracking, as well as the steady-state

misalignment. Adding to that the reduced computational amount provided by the use

of two shorter adaptive filters instead of a single (much longer) one, we can conclude

that the proposed solutions are useful in the context of system identification with BF.

78



Chapter 3

Trilinear Forms (TF)

This chapter contains the work developed in the context of system identification for

trilinear forms (TF). It begins with a short review on tensors in subchapter 3.1, which

are needed for expressing mathematically the TF. Next, the system model for TF is

introduced in 3.2, and in this framework, the Wiener filter for TF is developed in 3.3.

The LMS algorithm tailored for TF (LMS-TF), along with its normalized version,

NLMS-TF, are then developed in 3.4, while in the end of the chapter, in 3.5, we

provide a related discussion and conclusions. The results presented in this chapter

were published in [66, 67].

In Chapter 2, we made use of a new approach introduced recently in [34], where

the bilinear term is considered within the framework of a MISO system, and it is

defined with respect to the spatiotemporal model’s impulse responses. A particular

case of this type of system is the Hammerstein model [18]; in this scenario, a single-

input signal passes through a nonlinear block and a linear system, which are cascaded.

The bilinear approach is suitable for a particular form of the decomposition, which

involves only two terms (i.e., two systems). In some cases, it would be useful to

exploit a higher-order decomposition, which could improve the overall performance

in terms of both complexity and efficiency.



Adaptive Algorithms for Multilinear in Parameters Structures

Motivated by the good performance of the previously mentioned approaches in

the study of BF, we further extend this approach to higher-order multilinear in pa-

rameters systems. Applications, such as multichannel equalization [37], nonlinear

acoustic devices for echo cancellation [39], multiple-input/multiple-output (MIMO)

communication systems [68, 69] and others, can be addressed within the framework of

multilinear systems. Because many of these applications can be formulated in terms

of system identification problems [70], it is of interest to estimate a model based on

the available and observed data, which are usually the input and the output of the

system.

3.1 Background on Tensors

TF are understood as an extension of the previously studied BF, and they are ex-

pressed and studied using tensors. For this reason, we first need to recall the notion of

tensor, along with the basic operations which can be done using these mathematical

tools. This introductory subchapter was published before in [66, 67].

A tensor is a generalization of a matrix; it is a multidimensional array of data

whose entries are referred by using multiple indices [71, 72]. The notation used for a

tensor, a matrix, a vector, and a scalar isA, A, a, and a, respectively. In this chapter,

we are only interested in the third-order tensor A ∈ RL1×L2×L3 , meaning that its

elements are real-valued and its dimension is L1 × L2 × L3. In particular, a matrix

and a vector are second- and first-order tensors, respectively, with A ∈ RL1×L2 and

a ∈ RL1 . For a third-order tensor, the first and second indices l1 and l2 correspond to

the row and column, respectively, as in a matrix, while the third index l3 corresponds

to the tube and describes its depth. These three indices describe the three different

modes. The entries of the different order tensors are denoted by

(A)l1l2l3 = al1l2l3 ,
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(A)l1l2 = al1l2 ,

(a)l1 = al1 ,

for l1 = 1, 2, . . . , L1, l2 = 1, 2, . . . , L2, and l3 = 1, 2, . . . , L3. The tensor A ∈

RL1×L2×L3 is diagonal if al1l2l3 6= 0 only for l1 = l2 = l3.

The notion of vectorization, which consists of transforming a matrix into a vector,

is very well-known. Matricization does somewhat the same thing but from a third-

order tensor into a large matrix. Depending on which index whose all elements are

considered first, we have matricization along three different modes [73, 74]:

A[1] = A:,1:L2,1:L3 =

[
A::1 · · · A::L3

]
, A[1] ∈ RL1×L2L3 ,

A[2] = A1:L1,:,1:L3 , A[2] ∈ RL2×L1L3 ,

A[3] = A1:L1,1:L2,:, A[3] ∈ RL3×L1L2 ,

where A::l3 ∈ RL1×L2 , l3 = 1, 2 . . . , L3 are the frontal slices. In A[1], we consider

the mode row and then vary the columns and the tubes. In A[2], we take the mode

column and then vary the lines and the tubes. Finally, in A[3], we take the mode tube

and then vary the rows and the columns. The mode-1, mode-2, and mode-3 ranks

are the ranks of A[1], A[2], and A[3], respectively. The vectorization of a tensor is

vec (A) = vec
(
A[1]

)
=


vec (A::1)

...

vec (A::L3)

 ∈ RL1L2L3 .

Let b1, b2, and b3 be vectors of length L1, L2, and L3, respectively, whose elements

are b1l1 , b2l2 , and b3l3 . A rank-1 tensor (of dimension L1 × L2 × L3) is defined as

B = b1 ◦ b2 ◦ b3, (3.1)
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where ◦ is the vector outer product and the elements of B are given by

(B)l1l2l3 = b1l1b2l2b3l3 . (3.2)

The frontal slices of B in (3.1) are B::l3 = b1b
T
2 b3l3 ∈ RL1×L2 , l3 = 1, 2 . . . , L3. In

particular, we have B = b1 ◦ b2 = b1b
T
2 , where T is the transpose operator. For

complex-valued signals, the transpose operator is usually replaced by the complex-

conjugate operator, H , but this is only a convenient convention. Therefore, the rank

of a tensorA, denoted rank (A), is defined as the minimum number of rank-1 tensors

that generate A as their sum. For example, if

B =
R∑
r=1

b1r ◦ b2r ◦ b3r, (3.3)

then rank (B) = R when R is minimal, and (3.3) is called the canonical polyadic

decomposition (CPD) of B. There are some fundamental differences between the

rank of the matrix A ∈ RL1×L2 and the rank of the tensor A ∈ RL1×L2×L3 . The rank

of A can never be larger than min{L1, L2} while the rank of A can be greater than

min{L1, L2, L3}.

The inner product between two tensors A and B of the same dimension is

〈A,B〉 =

L1∑
l1=1

L2∑
l2=1

L3∑
l3=1

al1l2l3bl1l2l3 = vecT (B) vec (A) .

As a consequence, the Frobenius norm is

‖A‖F =
√
〈A,A〉 =

∥∥A[1]

∥∥
F

=
∥∥A[2]

∥∥
F

=
∥∥A[3]

∥∥
F
.

If A = a1 ◦ a2 ◦ a3 and B = b1 ◦ b2 ◦ b3, then

〈A,B〉 = bT1 a1 × bT2 a2 × bT3 a3. (3.4)
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Therefore,

‖A‖F = ‖a1‖ × ‖a2‖ × ‖a3‖ , (3.5)

where ‖·‖ is the Euclidean norm.

It is important to be able to multiply a tensor with a matrix [75, 76]. Let the

tensor A ∈ RL1×L2×L3 and the matrix M1 ∈ RM1×L1 . The mode-1 product between

the tensor A and the matrix M1 gives the tensor:

U = A×1 M1, U ∈ RM1×L2×L3 , (3.6)

whose entries are

um1l2l3 =

L1∑
l1=1

al1l2l3mm1l1 , (3.7)

for m1 = 1, 2, . . . ,M1, and U[1] = M1A[1]. We have

‖A×1 M1‖F ≤ ‖A‖F ‖M1‖F .

In the same way, with the matrix M2 ∈ RM2×L2 , the mode-2 product between the

tensor A and the matrix M2 gives the tensor:

U = A×2 M2, U ∈ RL1×M2×L3 , (3.8)

whose entries are

ul1m2l3 =

L2∑
l2=1

al1l2l3mm2l2 , (3.9)

for m2 = 1, 2, . . . ,M2, and U[2] = M2A[2]. We have
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‖A×2 M2‖F ≤ ‖A‖F ‖M2‖F .

Finally, with the matrix M3 ∈ RM3×L3 , the mode-3 product between the tensor A

and the matrix M3 gives the tensor:

U = A×3 M3, U ∈ RL1×L2×M3 , (3.10)

whose entries are

ul1l2m3 =

L3∑
l3=1

al1l2l3mm3l3 , (3.11)

for m3 = 1, 2, . . . ,M3, and U[3] = M3A[3]. We have

‖A×3 M3‖F ≤ ‖A‖F ‖M3‖F .

We can multiply the tensor A with the three previous defined matrices M1, M2, and

M3. We get the tensor:

U = A×1 M1 ×2 M2 ×3 M3 = A×1 M1 ×3 M3 ×2 M2 (3.12)

= A×2 M2 ×1 M1 ×3 M3 = A×2 M2 ×3 M3 ×1 M1

= A×3 M3 ×1 M1 ×2 M2 = A×3 M3 ×2 M2 ×1 M1,

U ∈ RM1×M2×M3 .

Let

B = b1 ◦ b2 ◦ b3, (3.13)

where b1, b2, and b3 are vectors of length L1, L2, and L3, respectively. It is easy to

check that
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B ×1 M1 = M1b1 ◦ b2 ◦ b3,

B ×2 M2 = b1 ◦M2b2 ◦ b3,

B ×3 M3 = b1 ◦ b2 ◦M3b3.

The tensor A ∈ RL1×L2×L3 can always be decomposed as [77]

A = B ×1 S1 ×2 S2 ×3 S3, (3.14)

where B ∈ RJ1×J2×J3 is called the core tensor, and S1 =

[
s11 · · · s1J1

]
∈ RL1×J1 ,

S2 =

[
s21 · · · s2J2

]
∈ RL2×J2 , and S3 =

[
s31 · · · s3J3

]
∈ RL3×J3 are the side

matrices. Equivalently, (3.14) can be rewritten as

A =

J1∑
j1=1

J2∑
j2=1

J3∑
j3=1

bj1j2j3s1j1 ◦ s2j2 ◦ s3j3 . (3.15)

In particular, if B is diagonal, i.e., bj1j2j3 = 0 except when j1 = j2 = j3, then

A =
R∑
r=1

brrrs1r ◦ s2r ◦ s3r, (3.16)

where R = min{J1, J2, J3}. From the decomposition in (3.14), many approximations

can be made, which lead to some well-known and popular models.

Let b1, b2, and b3 be vectors of length L1, L2, and L3, respectively, the multipli-

cation of A with the row vectors bT1 , bT2 , and bT3 gives the scalar:

c = A×1 bT1 ×2 bT2 ×3 bT3 =

L1∑
l1=1

L2∑
l2=1

L3∑
l3=1

al1l2l3b1l1b2l2b3l3 . (3.17)

In particular, we have

c = A×1 bT1 ×2 bT2 =

L1∑
l1=1

L2∑
l2=1

al1l2b1l1b2l2 = bT1 Ab2 (3.18)
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and

c = a×1 bT1 =

L1∑
l1=1

al1b1l1 = bT1 a. (3.19)

It is easy to check that (3.17), (3.18), and (3.19) are trilinear (with respect to b1, b2,

and b3), bilinear (with respect to b1 and b2), and linear (with respect to b1) forms,

respectively.

We can express (3.18) as

c = tr
(
b2b

T
1 A
)

= tr
[(

b1b
T
2

)T
A
]

= vecT
(
b1b

T
2

)
vec (A)

= (b2 ⊗ b1)
T vec (A) , (3.20)

where tr(·) denotes the trace of a square matrix and ⊗ is the Kronecker product.

Expression (3.17) can also be written in a more convenient way. Indeed, we have

c = 〈A,B〉 = vecT (B) vec (A) = vecT (b1 ◦ b2 ◦ b3) vec (A)

= (b3 ⊗ b2 ⊗ b1)
T vec (A) , (3.21)

where B = b1 ◦ b2 ◦ b3.

3.2 System Model

The system model was published in [66, 67]. Let us consider the output of a MISO

system (with real-valued data) at the discrete-time index t defined as

y(t) = X (t)×1 hT1 ×2 hT2 ×3 hT3 =

L1∑
l1=1

L2∑
l2=1

L3∑
l3=1

xl1l2l3(t)h1l1h2l2h3l3 , (3.22)

where the zero-mean input signals can be described in a tensorial form X (t) ∈
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RL1×L2×L3 , with

(X )l1l2l3 (t) = xl1l2l3(t), lk = 1, 2, . . . , Lk, k = 1, 2, 3,

and the three impulse responses are defined by the vectors hk, k = 1, 2, 3, of lengths

L1, L2, and L3, respectively, i.e.,

hk =

[
hk1 hk2 · · · hkLk

]T
, k = 1, 2, 3.

As we can notice, y(t) represents a TF, because it is a linear function of each of

the vectors hk, k = 1, 2, 3, if the other two are fixed, and can be considered as an

extension of the BF [34].

Using the three impulse responses of the MISO system, we can also introduce a

rank-1 tensor of dimension L1 × L2 × L3:

H = h1 ◦ h2 ◦ h3, (3.23)

so that the elements of H are

(H)l1l2l3 = h1l1h2l2h3l3 , lk = 1, 2, . . . , Lk, k = 1, 2, 3.

Consequently, the output signal results in

y(t) = vecT (H) vec [X (t)] , (3.24)

where
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vec (H) =


vec (H::1)

...

vec (H::L3)

 = h3 ⊗ h2 ⊗ h1 , h, (3.25)

vec [X (t)] =


vec [X::1(t)]

...

vec [X::L3(t)]

 , x(t), (3.26)

H::l3 and X::l3(t) (with l3 = 1, 2 . . . , L3) are the frontal slices of H and X (t), re-

spectively, while h and x(t) denote two long vectors, each of them having L1L2L3

elements. Thus, the output signal can also be expressed as

y(t) = hTx(t). (3.27)

In this context, our goal is to estimate the global impulse response h, like in a

system identification problem. Usually, the output of the MISO system is corrupted

by an additive noise, thus resulting the reference signal:

d(t) = y(t) + v(t) = hTx(t) + v(t), (3.28)

where v(t) is a zero-mean additive noise, which is uncorrelated with the input signals.

At this point, we can also define the error signal:

e(t) = d(t)− ŷ(t) = d(t)− ĥTx(t), (3.29)

i.e., the difference between the reference signal and the estimated signal, ŷ(t) =

ĥTx(t), which represents the output of the estimated system defined by the impulse

response ĥ of length L1L2L3.
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As we can notice from (3.25), the global impulse response h results based on a

combination of the shorter impulse responses hk, k = 1, 2, 3, with L1, L2, and L3

coefficients, respectively. In this trilinear context, we only need L1 +L2 +L3 different

elements to form h, even though this global impulse response is of length L1L2L3.

Similar to (3.25), the estimate of the global impulse response can be decomposed as

ĥ = ĥ3 ⊗ ĥ2 ⊗ ĥ1, (3.30)

where ĥk, k = 1, 2, 3 are three impulse responses of lengths L1, L2, and L3, respec-

tively, which represent the estimates of the individual impulse responses hk, k =

1, 2, 3. However, we should note that there is no unique solution related to the de-

composition in (3.30), since for any constants η1, η2, and η3, with η1η2η3 = 1, we have

ĥ = ĥ3⊗ ĥ2⊗ ĥ1 = η3ĥ3⊗η2ĥ2⊗η1ĥ1. Consequently, ηkĥk, k = 1, 2, 3 also represent

a set of solutions for our problem. Despite this, the global impulse response, h, can

be identified with no scaling ambiguity.

3.3 Wiener Filter for Trilinear Forms

This subchapter (which was published in [66, 67]) introduces two types of Wiener

filter for the identification of TF: the direct one, as well as an iterative approach.

3.3.1 Direct Wiener Filter

The development of the Wiener filter is based on the minimization of the cost function,

represented by the MSE, as optimization criterion. Based on (3.29), let us consider

this cost function:

J
(
ĥ
)

= E
[
e2(t)

]
. (3.31)
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Using (3.29) in (3.31), together with the notation σ2
d = E [d2(t)] (the variance of the

reference signal), p = E [x(t)d(t)] (the cross-correlation vector between the input and

the reference signals), and R = E
[
x(t)xT (t)

]
(the covariance matrix of the input

signal), the cost function can be developed as

J
(
ĥ
)

= σ2
d − 2ĥTp + ĥTRĥ. (3.32)

The minimization of (3.32) leads to the well-known solution of the Wiener filter:

ĥW = R−1p. (3.33)

As we can notice, the dimension of the covariance matrix is L1L2L3 × L1L2L3, thus

requiring a large amount of data (much more than L1L2L3 samples) to obtain a good

estimate of it. Furthermore, R could be very ill-conditioned because of its huge size.

As a result, the solution ĥW will be very inaccurate, to say the least, in practice.

3.3.2 Iterative Wiener Filter

Next, we propose an iterative alternative to the conventional Wiener filter, following

the decomposition from (3.30). First, we can easily verify that

ĥ = ĥ3 ⊗ ĥ2 ⊗ ĥ1

=
(
ĥ3 ⊗ ĥ2 ⊗ IL1

)
ĥ1 (3.34)

=
(
ĥ3 ⊗ IL2 ⊗ ĥ1

)
ĥ2 (3.35)

=
(
IL3 ⊗ ĥ2 ⊗ ĥ1

)
ĥ3 (3.36)

where ILk
, k = 1, 2, 3 are the identity matrices of sizes L1×L1, L2×L2, and L3×L3,

respectively. Based on the previous relations, the cost function from (3.32) can be
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expressed in three different ways. For example, using (3.34), we obtain

J
(
ĥ1, ĥ2, ĥ3

)
= σ2

d − 2ĥT1

(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
p (3.37)

+ ĥT1

(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
R
(
ĥ3 ⊗ ĥ2 ⊗ IL1

)
ĥ1.

When ĥ2 and ĥ3 are fixed, we can rewrite (3.37) as

Jĥ2,ĥ3

(
ĥ1

)
= σ2

d − 2ĥT1 p1 + ĥT1 R1ĥ1, (3.38)

where

p1 =
(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
p, (3.39)

R1 =
(
ĥ3 ⊗ ĥ2 ⊗ IL1

)T
R
(
ĥ3 ⊗ ĥ2 ⊗ IL1

)
. (3.40)

In this case, the partial cost function from (3.38) is a convex one and can be minimized

with respect to ĥ1, by equating the gradient to zero.

Similarly, using (3.35) and (3.36), the cost function from (3.32) becomes

J
(
ĥ1, ĥ2, ĥ3

)
= σ2

d − 2ĥT2

(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
p (3.41)

+ ĥT2

(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
R
(
ĥ3 ⊗ IL2 ⊗ ĥ1

)
ĥ2

= σ2
d − 2ĥT3

(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
p (3.42)

+ ĥT3

(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
R
(
IL3 ⊗ ĥ2 ⊗ ĥ1

)
ĥ3.

Also, when ĥ1 and ĥ3 are fixed, (3.41) becomes

Jĥ1,ĥ3

(
ĥ2

)
= σ2

d − 2ĥT2 p2 + ĥT2 R2ĥ2, (3.43)
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where

p2 =
(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
p, (3.44)

R2 =
(
ĥ3 ⊗ IL2 ⊗ ĥ1

)T
R
(
ĥ3 ⊗ IL2 ⊗ ĥ1

)
, (3.45)

while when ĥ1 and ĥ2 are fixed, the cost function from (3.42) results in

Jĥ1,ĥ2

(
ĥ3

)
= σ2

d − 2ĥT3 p3 + ĥT3 R3ĥ3, (3.46)

where

p3 =
(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
p, (3.47)

R3 =
(
IL3 ⊗ ĥ2 ⊗ ĥ1

)T
R
(
IL3 ⊗ ĥ2 ⊗ ĥ1

)
. (3.48)

In both cases, the partial cost functions from (3.43) and (3.46) can be minimized with

respect to ĥ2 and ĥ3, respectively (by equating their gradients to zero).

The previous procedure suggests an iterative approach. To start the algorithm,

a set of initial values should be provided for two of the estimated impulse responses.

For example, we can choose

ĥ
(0)
2 =

1

L2

[
1 1 · · · 1

]T
, (3.49)

ĥ
(0)
3 =

1

L3

[
1 1 · · · 1

]T
. (3.50)

Hence, based on (3.39) and (3.40), one may compute

p
(0)
1 =

(
ĥ
(0)
3 ⊗ ĥ

(0)
2 ⊗ IL1

)T
p, (3.51)

R
(0)
1 =

(
ĥ
(0)
3 ⊗ ĥ

(0)
2 ⊗ IL1

)T
R
(
ĥ
(0)
3 ⊗ ĥ

(0)
2 ⊗ IL1

)
. (3.52)
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In the first iteration, the first cost function to be minimized results from (3.38) [using

(3.51)–(3.52)], i.e.,

Jĥ2,ĥ3

(
ĥ
(1)
1

)
= σ2

d − 2
(
ĥ
(1)
1

)T
p
(0)
1 +

(
ĥ
(1)
1

)T
R

(0)
1 ĥ

(1)
1 , (3.53)

which leads to the solution:

ĥ
(1)
1 =

(
R

(0)
1

)−1
p
(0)
1 . (3.54)

Also, since ĥ
(1)
1 and ĥ

(0)
3 are now available, we can evaluate [based on (3.44)–(3.45)]

p
(1)
2 =

(
ĥ
(0)
3 ⊗ IL2 ⊗ ĥ

(1)
1

)T
p, (3.55)

R
(1)
2 =

(
ĥ
(0)
3 ⊗ IL2 ⊗ ĥ

(1)
1

)T
R
(
ĥ
(0)
3 ⊗ IL2 ⊗ ĥ

(1)
1

)
, (3.56)

so that the cost function from (3.43) becomes

Jĥ1,ĥ3

(
ĥ
(1)
2

)
= σ2

d − 2
(
ĥ
(1)
2

)T
p
(1)
2 +

(
ĥ
(1)
2

)T
R

(1)
2 ĥ

(1)
2 , (3.57)

while its minimization leads to

ĥ
(1)
2 =

(
R

(1)
2

)−1
p
(1)
2 . (3.58)

Finally, using the solutions ĥ
(1)
1 and ĥ

(1)
2 , we can find ĥ

(1)
3 in a similar manner. First,

we evaluate [based on (3.47)–(3.48)]

p
(1)
3 =

(
IL3 ⊗ ĥ

(1)
2 ⊗ ĥ

(1)
1

)T
p, (3.59)

R
(1)
3 =

(
IL3 ⊗ ĥ

(1)
2 ⊗ ĥ

(1)
1

)T
R
(
IL3 ⊗ ĥ

(1)
2 ⊗ ĥ

(1)
1

)
. (3.60)
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Then, we minimize the cost function [which results from (3.46)]:

Jĥ1,ĥ2

(
ĥ
(1)
3

)
= σ2

d − 2
(
ĥ
(1)
3

)T
p
(1)
3 +

(
ĥ
(1)
3

)T
R

(1)
3 ĥ

(1)
3 , (3.61)

thus obtaining the solution:

ĥ
(1)
3 =

(
R

(1)
3

)−1
p
(1)
3 . (3.62)

Therefore, continuing a similar iterative procedure, at iteration n, we get the estimates

of the impulse responses based on the same main steps, as follows.

• Step 1:

ĥ
(n)
1 =

(
R

(n−1)
1

)−1
p
(n−1)
1 ,

where

p
(n−1)
1 =

(
ĥ
(n−1)
3 ⊗ ĥ

(n−1)
2 ⊗ IL1

)T
p,

R
(n−1)
1 =

(
ĥ
(n−1)
3 ⊗ ĥ

(n−1)
2 ⊗ IL1

)T
R
(
ĥ
(n−1)
3 ⊗ ĥ

(n−1)
2 ⊗ IL1

)
.

• Step 2:

p
(n)
2 =

(
ĥ
(n−1)
3 ⊗ IL2 ⊗ ĥ

(n)
1

)T
p,

R
(n)
2 =

(
ĥ
(n−1)
3 ⊗ IL2 ⊗ ĥ

(n)
1

)T
R
(
ĥ
(n−1)
3 ⊗ IL2 ⊗ ĥ

(n)
1

)
,

ĥ
(n)
2 =

(
R

(n)
2

)−1
p
(n)
2 .
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• Step 3:

p
(n)
3 =

(
IL3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1

)T
p,

R
(n)
3 =

(
IL3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1

)T
R
(
IL3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1

)
,

ĥ
(n)
3 =

(
R

(n)
3

)−1
p
(n)
3 .

Using the solutions from Steps 1–3, the global impulse response at iteration n

results in

ĥ(n) = ĥ
(n)
3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1 . (3.63)

Summarizing, the proposed iterative Wiener filter for the identification of TF is pro-

vided in Table 3.1 (in a more compact form that facilitates its implementation).

It was previously shown in [43] that the iterative Wiener filter can be interpreted

in terms of a block coordinate descent approach (or nonlinear Gauss-Seidel method)

[78, 41]. The convergence of this type of algorithms was proved in [78] (Sec. 2.7,

Proposition 2.7.1). In [44], the convergence proof was provided for a similar iterative

problem, while in [43], the convergence of the iterative process was studied for a

decomposition problem presented in the framework of a bilinear form.

We can set the decrease of the NM below a certain established threshold value

as a condition for stopping the iterative process. However, as it will be shown in

subchapter 3.3.3, the convergence of the proposed iterative Wiener filter for TF occurs

after only a small number of iterations.

The proposed iterative Wiener filter for TF represents an extension of the solution

presented in [34] (in the context of BF). However, when the MISO system identifi-

cation problem results based on (3.22), it is more advantageous to use the algorithm

tailored for TF, instead of reformulating the problem in terms of multiple BF. The
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Table 3.1: Iterative Wiener filter for the identification of trilinear forms.

Data:
R, p (estimated statistics based on the available data samples)
Initialization:

ĥ
(0)
2 = 1

L2

[
1 1 · · · 1

]T
ĥ
(0)
3 = 1

L3

[
1 1 · · · 1

]T
q
(0)
1 = ĥ

(0)
3 ⊗ ĥ

(0)
2 ⊗ IL1

p
(0)
1 =

(
q
(0)
1

)T
p

R
(0)
1 =

(
q
(0)
1

)T
Rq

(0)
1

For n = 1, 2, . . . :

ĥ
(n)
1 =

(
R

(n−1)
1

)−1
p
(n−1)
1

q
(n)
2 = ĥ

(n−1)
3 ⊗ IL2 ⊗ ĥ

(n)
1

p
(n)
2 =

(
q
(n)
2

)T
p

R
(n)
2 =

(
q
(n)
2

)T
Rq

(n)
2

ĥ
(n)
2 =

(
R

(n)
2

)−1
p
(n)
2

q
(n)
3 = IL3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1

p
(n)
3 =

(
q
(n)
3

)T
p

R
(n)
3 =

(
q
(n)
3

)T
Rq

(n)
3

ĥ
(n)
3 =

(
R

(n)
3

)−1
p
(n)
3

q
(n)
1 = ĥ

(n)
3 ⊗ ĥ

(n)
2 ⊗ IL1

p
(n)
1 =

(
q
(n)
1

)T
p

R
(n)
1 =

(
q
(n)
1

)T
Rq

(n)
1

ĥ(n) = ĥ
(n)
3 ⊗ ĥ

(n)
2 ⊗ ĥ

(n)
1

trilinear approach has some similarities (to some extent) with the one introduced in

[79]. However, the batch trilinear Wiener-Hopf algorithm from [79] is more related to

an adaptive approach, since the statistics are estimated within the algorithm. On the

other hand, in the case of our iterative Wiener filter, the estimates of the statistics

are considered to be a priori available (see also the related discussion in the next

section), which is basically in the spirit of the Wiener filter.
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3.3.3 Experimental Results

In this section, the performance of the proposed iterative Wiener filter for TF is

evaluated in the context of system identification. The input signals that form X (t)

are AR(1) processes, which are obtained by generating WGNs and then filtering them

through a first-order system 1/ (1− 0.9z−1). The additive noise v(t), corrupting the

output signal y(t), is white and Gaussian, with the variance set to σ2
v = 0.01. The

impulse responses used in simulations are depicted in Fig. 3.1. The impulse response

h1 is the first impulse response from the G168 Recommendation [55], of length L1 = 64

(see Fig. 3.1a). Next, h2 is a random impulse response (with Gaussian distribution)

of length L2 = 8 (as shown in Fig. 3.1b). Finally, the coefficients of the impulse

response h3 (depicted in Fig. 3.1c) are evaluated as h3l3 = 0.5l3−1, l3 = 1, 2, . . . , L3,

using L3 = 4. Therefore, the global impulse response from Fig. 3.1d results in h =

h3⊗h2⊗h1 and its length is L = L1L2L3 = 2048. As we can see, this global impulse

response is similar (to some extent) to a channel with echoes, similar to an acoustic

echo path.

In order to evaluate the identification of the individual filters hk, k = 1, 2, 3, we

use the NPM [40], defined as:

NPM
[
hk, ĥk

]
= 1−

[
hTk ĥk

‖hk‖‖ĥk‖

]2
. (3.64)

On the other hand, for the identification of the global impulse response, h, we should

use the NM:

NM
[
h, ĥ

]
=
‖h− ĥ‖2

‖h‖2
. (3.65)

We consider that the covariance matrix R and the cross-correlation vector p are

estimated based on N data samples:
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Figure 3.1: Impulse responses used in simulations: (a) h1 of length L1 = 64 (the first
impulse response from G168 Recommendation [55]), (b) h2 of length L2 = 8 (random
impulse response with Gaussian distribution), (c) h3 of length L3 = 4 (its elements
are evaluated as h3l3 = 0.5l3−1, l3 = 1, . . . , L3), and (d) the global impulse response
h = h3 ⊗ h2 ⊗ h1 of length L = L1L2L3 = 2048.

R̂ =
1

N

N∑
t=1

x(t)xT (t), (3.66)

p̂ =
1

N

N∑
t=1

x(t)d(t). (3.67)

These two terms are a priori computed and they are used afterwards (instead of R

and p) for both the conventional and iterative Wiener filters.

The matrix involved in the linear system, to be solved in the case of the conven-

tional Wiener filter from (3.33), is of size L × L; hence, a number of data samples

larger than L are needed to estimate the statistics in (3.66) and (3.67), in order to

obtain a good solution. This is shown in Fig. 3.2, where different values of N [that

is, the available amount of data in (3.66) and (3.67)] are used and the solution pro-

vided by the conventional Wiener filter is evaluated for each of these values. Similar
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Figure 3.2: NM of the conventional Wiener filter as a function of the number of
available data samples used to estimate the statistics (N), for the identification of
the global impulse response from Fig. 3.1d. The input signals are AR(1) processes,
L = 2048, and σ2

v = 0.01.

to (2.10), the performance measure in Fig. 3.2 is the NM (in dB), which is defined

as 10log10

(∥∥∥h− ĥW

∥∥∥2 / ‖h‖2); in this case, the conventional Wiener solution ĥW

results from (3.33) using (3.66) and (3.67). As we can see, the conventional Wiener

filter achieves a reasonable decrease in misalignment only when a large amount of

data (i.e., N > L) are used to estimate the statistics in (3.66) and (3.67).

The main advantage provided by the iterative Wiener filter is that it operates with

much shorter filters [due to the decomposition shown in (3.30)] and, consequently, the

dimensions of the linear systems of equations to be solved are significantly reduced.

Therefore, even with a small amount of data (i.e., N < L), the iterative Wiener

filter is able to obtain a reliable estimation. This advantage is outlined in Fig. 3.3,

where the solution provided by the conventional Wiener filter (based on (3.33) and

using (3.66) and (3.67)) is compared to the iterative Wiener filter from (3.63). The

performance measure is the NM (in dB), which is evaluated based on (2.10), for the
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identification of the global system h. Three amounts of data are considered in this

experiment, that is, N = 500, 2500, and 5000. Clearly, in the first case (N = 500),

the conventional Wiener filter leads to an inaccurate solution due to the small amount

of data (as compared to L = 2048). When the amount of data slightly exceeds the

value of L (e.g., N = 2500), the conventional Wiener filter provides a more reliable

solution, that is, the misalignment attenuation is approximately −10 dB. Finally, for

a large amount of data (N = 5000), this conventional solution is improved in terms

of accuracy (e.g., the misalignment is close to −20 dB). On the other hand, in all the

previous cases, the proposed iterative Wiener filter achieves a much more accurate

solution (with only a few iterations), which outperforms by far the conventional one

(even in the case when a small amount of data are available, e.g., N = 500). For

example, the iterative Wiener filter which uses N = 500 yields a lower misalignment

level with respect to the conventional Wiener filter with N = 5000.

In Fig. 3.4, the performance of the iterative Wiener filter is also illustrated using

the NPMs (in dB), based on (3.64), for the identification of the individual impulse

responses from Fig. 3.1a–c. Basically, the same conclusion applies, that is, only a

few iterations are required by the iterative Wiener filter to achieve a reliable solution

(even for a small amount of data).

3.4 Least-Mean-Square Adaptive Algorithms for

Trilinear Forms

It is well-known that the Wiener filter presents several limitations which may make it

unsuitable to be used in practice (e.g., the matrix inversion operation, the estimation

of the correlation matrix, etc.). For this reason, a more convenient manner of treating

the system identification problem is through adaptive filtering. The simplest type

of adaptive algorithm is LMS, which will be presented in the following subchapter,
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Figure 3.3: NM of the conventional and iterative Wiener filters, for different values
of the number of available data samples used to estimate the statistics (N), for the
identification of the global impulse response from Fig. 3.1d. The input signals are
AR(1) processes, L = 2048, and σ2

v = 0.01.

tailored for the new TF approach. Then we continue by deriving a time-variant step-

size parameter in 2.3.2, whose expression yields the NLMS filter. Then, in subchapter

3.4.3, we show through experiments that the proposed solutions outperform their

regular counterparts.

3.4.1 Least-Mean-Square Algorithm for Trilinear Forms

(LMS-TF)

The work presented in this section was published in [66]. First, let us consider the

three estimated impulse responses ĥk, k = 1, 2, 3, and the corresponding a priori error

signals:
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Figure 3.4: NPM of the iterative Wiener filter, for different values of the number
of available data samples used to estimate the statistics (N), for the identifica-

tion of the individual impulse responses from Fig. 3.1a–c: (a) NPM
(
h1, ĥ

(n)
1

)
, (b)

NPM
(
h2, ĥ

(n)
2

)
, and (c) NPM

(
h3, ĥ

(n)
3

)
. The input signals are AR(1) processes,

L1 = 64, L2 = 8, L3 = 4, and σ2
v = 0.01.

eĥ2ĥ3
(t) = d(t)− ĥT1 (t− 1)xĥ2ĥ3

(t), (3.68)

eĥ1ĥ3
(t) = d(t)− ĥT2 (t− 1)xĥ1ĥ3

(t), (3.69)

eĥ1ĥ2
(t) = d(t)− ĥT3 (t− 1)xĥ1ĥ2

(t), (3.70)

where

xĥ2ĥ3
(t) =

(
ĥ3 ⊗ ĥ2 ⊗ IL1

)
x(t), (3.71)

xĥ1ĥ3
(t) =

(
ĥ3 ⊗ IL2 ⊗ ĥ1

)
x(t), (3.72)

xĥ1ĥ2
(t) =

(
IL3 ⊗ ĥ2 ⊗ ĥ1

)
x(t). (3.73)

It can be verified that eĥ2ĥ3
(t) = eĥ1ĥ3

(t) = eĥ1ĥ2
(t). In this context, the LMS filter
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updates for the three filters are the following:

ĥ1(t) = ĥ1(t− 1)−
µĥ1

2
×
∂eĥ2ĥ3

2(t)

∂ĥ1(t− 1)
= ĥ1(t− 1) + µĥ1

xĥ2ĥ3
(t)eĥ2ĥ3

(t), (3.74)

ĥ2(t) = ĥ2(t− 1)−
µĥ2

2
×
∂eĥ1ĥ3

2(t)

∂ĥ2(t− 1)
= ĥ2(t− 1) + µĥ2

xĥ1ĥ3
(t)eĥ1ĥ3

(t), (3.75)

ĥ3(t) = ĥ3(t− 1)−
µĥ3

2
×
∂eĥ1ĥ2

2(t)

∂ĥ3(t− 1)
= ĥ3(t− 1) + µĥ3

xĥ1ĥ2
(t)eĥ1ĥ2

(t), (3.76)

where µĥ1
> 0, µĥ2

> 0, µĥ3
> 0 are the step-size parameters. Relations (3.74)–(3.76)

define the LMS algorithm for TF, namely LMS-TF.

For the initialization of the estimated impulse responses, we use:

ĥ1(0) = [1 0 · · · 0]T , (3.77)

ĥ2(0) =
1

L2

[1 1 · · · 1]T , (3.78)

ĥ3(0) =
1

L3

[1 1 · · · 1]T . (3.79)

In the end, we can obtain the global filter in the following way:

ĥ(t) = ĥ3(t)⊗ ĥ2(t)⊗ ĥ1(t). (3.80)

Alternatively, this global impulse response can be identified directly, using the regular

LMS algorithm, by using the following update:

ĥ(t) = ĥ(t− 1) + µĥx(t)e(t), (3.81)

where

e(t) = d(t)− ĥ(t− 1)x(t) (3.82)

and µĥ is the global step-size parameter.
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However, an observation needs to be made regarding the update in relation (3.81):

this involves an adaptive filter of length L1L2L3, whereas the LMS-TF algorithm,

defined by the updates (3.74)–(3.76), uses three shorter filters of length L1, L2, and

L3, respectively. Therefore, the complexity of this new approach is lower and the

convergence rate is expected to be faster.

3.4.2 Normalized LMS Algorithm for Trilinear Forms

(NLMS-TF)

The step-size parameters in (3.74)–(3.76) take constant values, chosen such that they

ensure the convergence of the algorithm and a good compromise between convergence

speed and steady-state misadjustment. Nevertheless, when dealing with nonstation-

ary signals, it may be more appropriate to use time-dependent step-sizes, which lead

to the following update relations:

ĥ1(t) = ĥ1(t− 1) + µĥ1
(t)xĥ2ĥ3

(t)eĥ2ĥ3
(t), (3.83)

ĥ2(t) = ĥ2(t− 1) + µĥ2
(t)xĥ1ĥ3

(t)eĥ1ĥ3
(t), (3.84)

ĥ3(t) = ĥ3(t− 1) + µĥ3
(t)xĥ1ĥ2

(t)eĥ1ĥ2
(t). (3.85)

For deriving the expressions of the step-size parameters, we take into account the

stability conditions and we target to cancel the a posteriori error signals [45]:

εĥ2ĥ3
(t) = d(t)− ĥT1 (t)xĥ2ĥ3

(t), (3.86)

εĥ1ĥ3
(t) = d(t)− ĥT2 (t)xĥ1ĥ3

(t), (3.87)

εĥ1ĥ2
(t) = d(t)− ĥT3 (t)xĥ1ĥ2

(t). (3.88)

By replacing (3.74) in (3.86), (3.75) in (3.87) and (3.76) in (3.88), respectively, and

by imposing the conditions εĥ2ĥ3
(t) = 0, εĥ1ĥ3

(t) = 0, and εĥ1ĥ2
(t) = 0, we obtain
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that:

εĥ2ĥ3
(t) = eĥ2ĥ3

(t)
[
1− µĥ1

(t)xT
ĥ2ĥ3

(t)xĥ2ĥ3
(t)
]

= 0, (3.89)

εĥ1ĥ3
(t) = eĥ1ĥ3

(t)
[
1− µĥ2

(t)xT
ĥ1ĥ3

(t)xĥ1ĥ3
(t)
]

= 0, (3.90)

εĥ1ĥ2
(t) = eĥ1ĥ2

(t)
[
1− µĥ3

(t)xT
ĥ1ĥ2

(t)xĥ1ĥ2
(t)
]

= 0. (3.91)

Consequently, by assuming that eĥ2ĥ3
(t) 6= 0, eĥ1ĥ3

(t) 6= 0, and eĥ1ĥ2
(t) 6= 0, the

following expressions for the step-size parameters result:

µĥ1
(t) =

1

xT
ĥ2ĥ3

(t)xĥ2ĥ3
(t)
, (3.92)

µĥ2
(t) =

1

xT
ĥ1ĥ3

(t)xĥ1ĥ3
(t)
, (3.93)

µĥ3
(t) =

1

xT
ĥ1ĥ2

(t)xĥ1ĥ2
(t)
. (3.94)

In order to achieve a good compromise between convergence rate and misadjust-

ment, three positive constants 0 < αĥ1
< 1, 0 < αĥ2

< 1, and 0 < αĥ3
< 1 are

employed [1]. In addition to that, three regularization constants δĥ1
> 0, δĥ2

> 0,

and δĥ3
> 0, usually chosen to be proportional to the input signal variance [46], are

added to the denominators of the step-size parameters. Finally, the updates of the

NLMS algorithm for TF (NLMS-TF) become:

ĥ1(t) = ĥ1(t− 1) +
αĥ1

(t)xĥ2ĥ3
(t)eĥ2ĥ3

(t)

xT
ĥ2ĥ3

(t)xĥ2ĥ3
(t) + δĥ1

, (3.95)

ĥ2(t) = ĥ2(t− 1) +
αĥ2

(t)xĥ1ĥ3
(t)eĥ1ĥ3

(t)

xT
ĥ1ĥ3

(t)xĥ1ĥ3
(t) + δĥ2

, (3.96)

ĥ3(t) = ĥ3(t− 1) +
αĥ3

(t)xĥ1ĥ2
(t)eĥ1ĥ2

(t)

xT
ĥ1ĥ2

(t)xĥ1ĥ2
(t) + δĥ3

. (3.97)

The initializations of the estimated filters may be the same as (3.77), (3.78), and

(3.79). In a similar way as for the LMS algorithm, the global impulse response can
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be identified using the regular NLMS:

ĥ(t) = ĥ(t− 1) +
αĥx(t)e(t)

xT (t)x(t) + δĥ
, (3.98)

where e(t) is given in (3.82). The parameters αĥ and δĥ represent the normalized

step-size parameter and the regularization constant for the global filter, respectively.

As it was shown before in [35] for BF, the global misalignment can be controlled

by using a constraint on the sum of the normalized step-sizes, and this sum should

be smaller than 1. In this way, for different values of αĥ1
, αĥ2

, αĥ3
fulfilling this

condition, the misalignment of the global filter is the same. On the other hand, in

the case when αĥ1
= αĥ2

= αĥ3
, the three filters reach the same misalignment level.

Again, we can notice that the global impulse response identification involves the

use of a filter of length L1L2L3. Because the trilinear approach uses three much shorter

impulse responses of lengths L1, L2, and L3, respectively, it is expected that this new

solution will yield a faster convergence. This will be shown through simulations.

The NLMS-TF algorithm proposed here is similar to the one presented in [80].

However, our choice of the system impulse responses used in simulations is different

from the one in [80], where one of the three paths contains only one nonzero element.

On the contrary, we aim to show the performance of the algorithm in a scenario which

includes a real echo path. In addition, we also study the tracking capability of the

algorithm.

3.4.3 Experimental Results

For the simulations in this section, the setup is the same as for the previous ex-

periments, in subchapter 3.3.3. First, we aim to show the influence of the constant

step-size values on the performance of the LMS-TF algorithm. The performance

measure is the NM:
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Figure 3.5: NM of the LMS-TF algorithm using different values of the step-size
parameters.

NM
[
h, ĥ(t)

]
=
‖h− ĥ(t)‖2

‖h‖2
. (3.99)

In Fig. 3.5 it can be seen that if the step-sizes take large values, the LMS-TF

algorithm reaches convergence after less than 104 iterations. Then, as these values

decrease, the convergence becomes slower but the steady-state value of the NM also

decreases, highlighting the compromise between convergence rate and NM value.

Next, we illustrate the improvement brought by the proposed solution, by compar-

ing the LMS-TF algorithm to its regular counterpart, applied for the identification of

the global filter. Fig. 3.6 shows the values of the NM for the regular LMS filter and the

LMS-TF. The first observation is that, in order to reach the same steady-state value

of the NM, the regular LMS algorithm needs many more iterations. On the other

hand, for a similar convergence speed, the final NM provided by the LMS-TF is much

lower than that offered by its regular counterpart. This proves that the proposed

solution offers a significant improvement with respect to the classical approach.
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Figure 3.6: NM of the LMS-TF and regular LMS algorithms.

The next step is to study the behavior of the NLMS-TF filter. First, the per-

formance of the NLMS-TF algorithm is depicted in Fig. 3.7, for different values of

the normalized step-sizes. The regularization constants are δĥ1
= δĥ2

= δĥ3
= 0.001.

The same conclusion as for the LMS-TF case is valid, namely that the decrease in

the normalized step-sizes leads to a smaller value of the final NM but at the cost of

a slower convergence rate. When the step-size values decrease 10 times, the num-

ber of iterations needed to reach convergence increases almost 10 times, while the

steady-state NM value decreases by a bit more than 10 dB.

We then compare the NLMS-TF algorithm with its regular counterpart (applied

on the global filter) in Fig. 3.8. Again, we observe that the NLMS-TF behaves better

than the regular NLMS algorithm, from the perspective of both convergence rate and

final NM value.

Finally, the tracking capability of the NLMS-TF algorithm is of interest, that is,

the capability of the algorithm to react to abrupt changes to the impulse responses.

In order to study this characteristic, we simulated a sudden change of the random
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Figure 3.7: NM of the NLMS-TF algorithm using different values of the step-size
parameters.

0 2 4 6 8 10 12 14 16 18

Iterations 104

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

N
M

 (
d
B

)

Figure 3.8: NM of the NLMS-TF and regular NLMS algorithms.
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Figure 3.9: NM of the NLMS-TF and regular NLMS algorithms. The impulse re-
sponse h2 changes in the middle of the experiment.

impulse response h2 in the middle of the experiment. The results are presented

in Fig. 3.9. The improvement brought by the NLMS-TF algorithm is clear. The

algorithm tracks faster after the change of the system, while the value of the NM

is smaller, as compared to the regular NLMS filter. This proves that even if the

environment changes, the proposed approach exhibits good behavior.

3.5 Summary and Conclusions

In this chapter, we addressed the problem of multilinear system identification, focus-

ing in particular on TF in the framework of MISO systems. TF are defined with

respect to the impulse responses of the system and are treated using third-order

tensors. In this context, we derived the corresponding Wiener filter, as well as the

LMS and NLMS adaptive algorithms, tailored for such TF (LMS-TF and NLMS-TF).

Following this development, the solution can then be extended to higher-order multi-
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linear systems. The proposed approach presents an advantage from the perspective of

exploiting the decomposition of the global impulse response. One potential limitation

of such a method is related to the particular form of the global impulse response to be

identified, which is a result of separable systems. In perspective, it would be useful to

extend this approach to identify more general forms of impulse responses. We have

made a first step in direction and we developed a Kalman filter applicable to impulse

responses that are not perfectly separable, as it will be seen in Chapter 4.

We have shown through simulations that the proposed algorithms lead to better

solutions as compared to their regular counterparts, due to the reformulation of the

system identification problem of high dimension in lower dimension problems. Exper-

imental results support the theoretical analysis and highlight the good performance

of the proposed solutions for the problem of system identification. Future work can

focus on extending the approach to higher-order multilinear systems.
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Chapter 4

Nearest Kronecker Product (NKP)

Decomposition and Low-Rank

Approximation

The work in this chapter was motivated by a well-known limitation of the previous

system identification solutions. System identification problems are very difficult to

treat in case of long length impulse responses [81, 47]. In these cases, the length of

the filter may reach hundreds or even thousands of coefficients, raising challenges in

terms of convergence, complexity, and accuracy of the solution. Moreover, another

possible issue is the large parameter space [80, 82]. Nowadays, such scenarios are

related to very important topics, for example, big data [83], machine learning [84],

and source separation [85]. However, we can take advantage of the characteristics of

the impulse response, in order to improve the overall performance. In this context,

a recently introduced approach exploits a Kronecker product decomposition of the

impulse response in tandem with low-rank approximations [43]. Also, a recursive

least-squares (RLS) algorithm was developed based on this idea, showing appealing

results for the identification of low-rank systems, like typical echo paths [86]. In this
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context, we developed a KF tailored for the identification of such low-rank systems.

Simulations performed in the context of echo cancellation indicate that the proposed

algorithm outperforms the regular KF, but also its RLS-based counterpart.

The results from this chapter were submitted for publication in [87].

4.1 An Efficient Approach for Low-Rank System

Identification

Let us consider a linear system defined by the real-valued impulse response h of length

L = L1L2, where L1 ≥ L2. This impulse response can be decomposed in L2 short

impulse responses of length L1 each, such that h =

[
sT1 sT2 . . . sTL2

]T
, where

sl, l = 1, 2, . . . , L2 are the short impulse responses and the superscript T denotes the

transpose operator. Alternatively, we can reshape h into a matrix of size L1 × L2,

which is H =

[
s1 s2 . . . sL2

]
. At this point, the question is how well h can be

approximated by h2 ⊗ h1, where h1 and h2 are two impulse responses of lengths L1

and L2, respectively, and ⊗ is the Kronecker product. Hence, we can define a measure

based on the NM [88], which can be expressed into two equivalent forms:

M (h1,h2) =
‖h− h2 ⊗ h1‖

‖h‖
=

∥∥H− h1h
T
2

∥∥
F

‖H‖F
, (4.1)

where ‖·‖ and ‖·‖F denote the Euclidean and Frobenius norms, respectively. To find

the optimal values of h1 and h2, we need to minimize M (h1,h2). Alternatively,

minimizing this quantity is equivalent to finding the nearest rank-1 matrix to H [88],

whose solution is obtained from the well-known singular value decomposition (SVD)

[62].

Next, using the SVD, we can express H = U1ΣUT
2 =

∑L2

l=1 σlu1,lu
T
2,l, where U1

and U2 are two orthogonal matrices of sizes L1×L1 and L2×L2, respectively, and Σ
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is an L1×L2 rectangular diagonal matrix with nonnegative real numbers on its main

diagonal. The vectors u1,l (resp. u2,l), with l = 1, 2, . . . , L2, denote the columns of

U1 (resp. U2); in fact, they are the left-singular (resp. right-singular) vectors of H,

while the diagonal entries σl, l = 1, 2, . . . , L2 of Σ represent the singular values of H,

with σ1 ≥ σ2 ≥ · · · ≥ σL2 ≥ 0. Hence, the optimal impulse responses that minimize

M (h1,h2) are h1 =
√
σ1u1,1 and h2 =

√
σ1u2,1, where u1,1 (resp. u2,1) is the first

column of U1 (resp. U2). Therefore, the optimal approximation of h is h = h2 ⊗ h1.

Clearly, there is no unique set of solutions, since h2 ⊗ h1 = ηh2 ⊗ (1/η)h1, where

η 6= 0 is a real-valued number. However, the global impulse response h results with

no scaling ambiguity.

In the more general case, the short impulse responses that compose h (i.e., sl, l =

1, 2, . . . , L2) may not be that linearly dependent. Consequently, we can use the ap-

proximation h ≈
∑P

p=1 h2,p ⊗ h1,p = vec
(
H1H

T
2

)
, where P ≤ L2, h1,p and h2,p

are impulse responses of lengths L1 and L2, respectively, vec(·) denotes the vec-

torization operation (i.e., conversion of a matrix into a vector [42]), and H1 =[
h1,1 h1,2 . . . h1,P

]
and H2 =

[
h2,1 h2,2 . . . h2,P

]
are matrices of sizes

L1 × P and L2 × P , respectively. In this context, the problem is to minimize

M (H1,H2) =

∥∥H−H1H
T
2

∥∥
F

‖H‖F
, (4.2)

which leads to the optimal solutions

H1 =

[
h1,1 h1,2 . . . h1,P

]
=

[
√
σ1u1,1

√
σ2u1,2 . . .

√
σPu1,P

]
(4.3)

H2 =

[
h2,1 h2,2 . . . h2,P

]
=

[
√
σ1u2,1

√
σ2u2,2 . . .

√
σPu2,P

]
, (4.4)

where u1,p, p = 1, 2, . . . , P (resp. u2,p, p = 1, 2, . . . , P ) are the first P columns of

U1 (resp. U2). Thus, the optimal approximation of h is
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h(P ) =
P∑
p=1

h2,p ⊗ h1,p =
P∑
p=1

σpu2,p ⊗ u1,p, (4.5)

while the approximation error is e(P ) = h−h(P ) =
∑L2

i=P+1 σiu2,i⊗u1,i. To evaluate

this approximation error we can use a performance measure based on the NM, i.e.,

‖e(P )‖ / ‖h‖.

As we can notice, the exact decomposition is obtained for P = L2. However,

if the rank of the matrix H is equal to P < L2 (i.e., σi = 0, for P < i ≤ L2),

then we can estimate h at least as well as in the conventional approach. Moreover,

if the approximation of the impulse response is a good one (for a reasonably low

value of P , as compared to L2), important advantages can be obtained by using

this decomposition approach for low-rank system identification problems [43]. The

expected gain could be twofold, in terms of both performance and complexity.

A Wiener solution based on the nearest Kronecker product (NKP) was developed

in previous works, along with an RLS adaptive filter [86]. However, we do not present

these results here, since they are not necessary for the ease of understanding of the

following developments. Instead, we continue by deriving a KF suitable for the iden-

tification of long length impulse responses, based on the approach discussed earlier

in this chapter.

4.2 Kalman Filter Based on the Nearest Kro-

necker Product Decomposition (KF-NKP)

The KF [11] is a very popular signal processing tool, which is commonly used in

the framework of many important applications, e.g., see [89] and references therein.

Basically, it recursively estimates a set of unknown variables, based on a set of ob-
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servations (corrupted by noise). Due to its practical features, the KF fits very well

in the context of different real-world system identification problems.

One of the most challenging system identification applications is echo cancella-

tion [47]. Its main difficulty is related to the long length of the impulse response

to be identified (i.e., the echo path), which can be of the order of hundreds or even

thousands of coefficients. Nevertheless, the KF also shows appealing results in the

context of echo cancellation [16, 90, 91, 92].

It is known that some specific characteristics of the impulse response could be ex-

ploited during the identification process, in order to improve the overall performance.

For example, the echo paths are sparse in nature (i.e., most of the coefficients are zero

or small), which inspired the development of the proportionate-type algorithms, e.g.,

see [15, 49, 51] and references therein. Another approach exploits the decomposition

of the impulse response, reformulating the problem in terms of the identification of

bilinear/trilinear forms [19, 35, 79, 80]. However, most of these algorithms are de-

signed in the framework of perfectly separable systems, which is not always the case

in practical applications.

Recently, an improved solution was presented in [43], by exploiting the NKP

decomposition of the impulse response, together with low-rank approximation, thus

being applicable for the identification of more general forms of low-rank systems (like

echo paths). These techniques were previously addressed in the context of tensor

decompositions and modeling, in the framework of different applications [85, 84, 69,

93, 94, 95]. In [86], an RLS algorithm was developed based on the approach introduced

in [43]. In this work, we further extend this idea using the KF, showing improved

results as compared to the RLS-based solution.

In the general framework of a system identification problem, the reference signal is

usually defined as the output of an unknown system, corrupted by an additive noise.

Hence, the signal model is
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d(t) = hT (t)x(t) + v(t) = y(t) + v(t), (4.6)

where d(t) is the zero-mean desired (or reference) signal at the discrete-time in-

dex t, h(t) is the impulse response of the unknown system (of length L), x(t) =[
x(t) x(t− 1) · · · x(t− L+ 1)

]T
is a vector containing the most recent L time

samples of the zero-mean input signal x(t), and v(t) is the zero-mean additive noise

with the variance σ2
v = E [v2(t)], where E[·] denotes mathematical expectation. It is

assumed that all the data is real valued and x(t) and v(t) are uncorrelated.

The main goal is to estimate h(t) with an adaptive filter, ĥ(t), of length L. In this

context, the estimation error is defined as the difference between the desired signal,

d(t), and the output of the adaptive filter (i.e., the estimated signal), ŷ(t), which

results in

e(t) = d(t)− ŷ(t) = d(t)− ĥT (t− 1)x(t). (4.7)

Based on the approach presented in Section 4.1, let us assume that L = L1L2 (with

L1 ≥ L2) and rank (H) = P < L2, so that the impulse response can be decomposed

as in (4.5), i.e., h(t) =
∑P

p=1 h2,p(t) ⊗ h1,p(t), where h1,p(t) and h2,p(t) are impulse

responses of lengths L1 and L2, respectively. These short impulse responses can

be grouped into two vectors of lengths PL1 and PL2, respectively, so that h1(t) =[
hT1,1(t) hT1,2(t) · · · hT1,P (t)

]T
and h2(t) =

[
hT2,1(t) hT2,2(t) · · · hT2,P (t)

]T
. A

similar decomposition can be used for the adaptive filter, i.e.,

ĥ(t) =
P∑
p=1

ĥ2,p(t)⊗ ĥ1,p(t), (4.8)

where ĥ1,p(t) and ĥ2,p(t) are filters of lengths L1 and L2, respectively. Using the

relationships [42]:

ĥ2,p(t)⊗ ĥ1,p(t) =
[
ĥ2,p(t)⊗ IL1

]
ĥ1,p(t) =

[
IL2 ⊗ ĥ1,p(t)

]
ĥ2,p(t), (4.9)
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where IL1 and IL2 are the identity matrices of sizes L1×L1 and L2×L2, respectively,

into (4.8), together with the notation x2,p(t) =
[
ĥ2,p(t− 1)⊗ IL1

]T
x(t) and x1,p(t) =[

IL2 ⊗ ĥ1,p(t− 1)
]T

x(t), the error signal in (4.7) can be expressed into two equivalent

forms:

e1(t) = d(t)−
P∑
p=1

ĥT1,p(t− 1)x2,p(t) = d(t)− ĥ
T

1 (t− 1)x2(t), (4.10)

e2(t) = d(t)−
P∑
p=1

ĥT2,p(t− 1)x1,p(t) = d(t)− ĥ
T

2 (t− 1)x1(t), (4.11)

where

ĥ1(t) =

[
ĥT1,1(t) ĥT1,2(t) · · · ĥT1,P (t)

]T
, x2(t) =

[
xT2,1(t) xT2,2(t) · · · xT2,P (t)

]T
,

ĥ2(t) =

[
ĥT2,1(t) ĥT2,2(t) · · · ĥT2,P (t)

]T
, x1(t) =

[
xT1,1(t) xT1,2(t) · · · xT1,P (t)

]T
.

Following this decomposition approach, the original system identification problem

(of length L1L2) can be reformulated in terms of two shorter filters, of lengths PL1

and PL2, respectively. Furthermore, the problem can be developed similarly to a

bilinear optimization strategy [19]. As it was seen in the previous chapters, in the

framework of the KF, the impulse responses can be modeled as state equations,

while the expression of the desired signal represents the observation equation. Thus,

we consider that h1(t) and h2(t) are zero-mean random vectors, which follow the

simplified first-order Markov models:

h1(t) = h1(t− 1) + w1(t), (4.12)

h2(t) = h2(t− 1) + w2(t), (4.13)

where w1(t) and w2(t) are zero-mean WGN vectors, with correlation matrices Rw1 =

σ2
w1

IPL1 and Rw2 = σ2
w2

IPL2 , respectively; here, IPL1 and IPL2 denote the identity

matrices of size PL1 × PL1 and PL2 × PL2, respectively. It is considered that w1(t)

is uncorrelated with h1(t − 1) and v(t), while w2(t) is uncorrelated with h2(t − 1)
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and v(t). The variances σ2
w1

and σ2
w2

capture the uncertainties in h1(t) and h2(t),

respectively.

In the context of the linear sequential Bayesian approach, the optimal estimates

of the state vectors result as [63]

ĥ1(t) = ĥ1(t− 1) + k1(t)e1(t), (4.14)

ĥ2(t) = ĥ2(t− 1) + k2(t)e2(t), (4.15)

where k1(t) and k2(t) are the Kalman gain vectors. Next, let us define the a posteriori

misalignments (which represent the state estimation errors) related to the two impulse

responses as µ1(t) = h1(t)−ĥ1(t) and µ2(t) = h2(t)−ĥ2(t), for which their correlation

matrices are Rµ1
(t) = E

[
µ1(t)µ

T
1 (t)

]
and Rµ2

(t) = E
[
µ2(t)µ

T
2 (t)

]
, respectively.

As mentioned in Section 4.1, we can only identify the impulse responses up to an

arbitrary scaling factor η; however, the pair h1(t)/η and ηh2(t) is equivalent to the

pair h1(t) and h2(t). Therefore, in order to simplify the notation, the scaling factor

η does not appear explicitly in the following.

Furthermore, we can define the a priori misalignments related to these two impulse

responses:

m1(t) = h1(t)− ĥ1(t− 1) = µ1(t− 1) + w1(t), (4.16)

m2(t) = h2(t)− ĥ2(t− 1) = µ2(t− 1) + w2(t), (4.17)

whose correlation matrices are Rm1(t) = E
[
m1(t)m

T
1 (t)

]
and Rm2(t) = E

[
m2(t)m

T
2 (t)

]
,

respectively. Also, developing in (4.16) and (4.17), we get

Rm1(t) = Rµ1
(t− 1) + Rw1 , (4.18)

Rm2(t) = Rµ2
(t− 1) + Rw2 . (4.19)
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The Kalman gain vectors are obtained by minimizing the criterions J1(t) =

1/(PL1)tr
[
Rµ1

(t)
]

and J2(t) = 1/(PL2)tr
[
Rµ2

(t)
]
, with respect to k1(t) and k2(t),

respectively, where tr [·] denotes the trace of a square matrix. From these minimiza-

tions, we find that

k1(t) = Rm1(t)x2(t)
[
xT2 (t)Rm1(t)x2(t) + σ2

v

]−1
, (4.20)

k2(t) = Rm2(t)x1(t)
[
xT1 (t)Rm2(t)x1(t) + σ2

v

]−1
, (4.21)

together with

Rµ1
(t) =

[
IPL1 − k1(t)x

T
2 (t)

]
Rm1(t), (4.22)

Rµ2
(t) =

[
IPL2 − k2(t)x

T
1 (t)

]
Rm2(t). (4.23)

The resulting KF based on the NKP decomposition (namely KF-NKP) is summarized

in Table 4.1.

As we can notice, the KF-NKP involves matrices of size PL1×PL1 and PL2×PL2,

thus resulting a complexity order of O [(PL1)
2 + (PL2)

2]. On the other hand, the

regular KF would involve matrices of size L1L2 ×L1L2, so that the complexity order

would be O [(L1L2)
2]. Consequently, when P � L2 ≤ L1, it is much more convenient

to use the proposed KF-NKP instead of the regular KF. In this context, in order to

maximize the gain in terms of complexity, it is reasonable to select the value of L1

close to the value of L2, such that the sum L1 + L2 should be as small as possible as

compared to the product L1L2 [43, 86].

The computational complexity is also illustrated in Fig. 4.1, in terms of the num-

ber of multiplications (per iteration) required by the proposed KF-NKP and the

regular KF, considering two impulse responses of different lengths. When L = 500

[Fig. 4.1(a)], the decomposition is performed using L1 = 25 and L2 = 20, while for

L = 1024 [Fig. 4.1(b)], we can use L1 = L2 = 32. As we can notice in both cases, the
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Table 4.1: Kalman filter based on the nearest Kronecker product decomposition (KF-
NKP).

Initialization:

ĥ1,p(0) =
[
ε 0 · · · 0

]T
, ĥ2,p(0) =

[
ε 0 · · · 0

]T
, p = 1, 2, . . . , P (0 < ε ≤ 1)

ĥ1(0) =
[
ĥT
1,1(0) ĥT

1,2(0) · · · ĥT
1,P (0)

]T
, ĥ2(0) =

[
ĥT
2,1(0) ĥT

2,2(0) · · · ĥT
2,P (0)

]T
Rµ1

(0) = εIPL1 , Rµ2
(0) = εIPL2 , ε = small positive constant

Parameters: σ2
w1
, σ2

w2
, σ2

v known or estimated; Rw1
= σ2

w1
IPL1

, Rw2
= σ2

w2
IPL2

Algorithm:

For t = 1, 2, . . .

x2,p(t) =
[
ĥ2,p(t− 1)⊗ IL1

]T
x(t), x1,p(t) =

[
IL2
⊗ ĥ1,p(t− 1)

]T
x(t), p = 1, 2, . . . , P

x2(t) =
[
xT
2,1(t) xT

2,2(t) · · · xT
2,P (t)

]T
, x1(t) =

[
xT
1,1(t) xT

1,2(t) · · · xT
1,P (t)

]T
Rm1(t) = Rµ1

(t− 1) + Rw1 , Rm2(t) = Rµ2
(t− 1) + Rw2

k1(t) = Rm1(t)x2(t)
[
xT
2 (t)Rm1(t)x2(t) + σ2

v

]−1
, k2(t) = Rm2(t)x1(t)

[
xT
1 (t)Rm2(t)x1(t) + σ2

v

]−1

Rµ1
(t) =

[
IPL1 − k1(t)xT

2 (t)
]
Rm1(t), Rµ2

(t) =
[
IPL2 − k2(t)xT

1 (t)
]
Rm2(t)

e(t) = d(t)− ĥ
T

1 (t− 1)x2(t) = d(t)− ĥ
T

2 (t− 1)x1(t)

ĥ1(t) = ĥ1(t− 1) + k1(t)e(t) =
[
ĥT
1,1(t) · · · ĥT

1,P (t)
]T

ĥ2(t) = ĥ2(t− 1) + k2(t)e(t) =
[
ĥT
2,1(t) · · · ĥT

2,P (t)
]T

ĥ(t) =

P∑
p=1

ĥ2,p(t)⊗ ĥ1,p(t)

computational complexity of the KF-NKP exceeds its regular counterpart for large

values of P (i.e., closer to L2). However, the proposed approach is not designed for

such cases, but for the identification of low-rank impulse responses, where the rank

of the matrix H is usually much lower as compared to L2. As will be illustrated in

the experiments reported in Section 4.2.2, the KF-NKP performs very well for the

identification of such systems (using a reasonably low value of P , as compared to L2).
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Figure 4.1: Number of multiplications (per iteration) required by the KF-NKP and
KF, as a function of P . The KF-NKP uses two shorter filters of lengths PL1 and
PL2 (with P ≤ L2), while the length of the KF is L = L1L2: (a) L1 = 25, L2 = 20,
and (b) L1 = L2 = 32.

4.2.1 Study of the KF-NKP Parameters

There are three main parameters that have to be set or estimated within the pro-

posed KF-NKP. The first one is the system noise power, σ2
v , which can be estimated

in different ways, depending on the application. For example, in echo cancellation

scenarios, this parameter can be estimated during the silence periods of the near-end

talker [96]. Also, other practical methods can be found in [12]. Their analysis is

beyond the scope of this work.

The other two specific parameters of the KF-NKP are σ2
w1

and σ2
w2

, which are

related to the model uncertainties and reflect the capability of the algorithm to track

the changes of the system. Nevertheless, there is always a compromise between good

tracking and low misalignment. When the values of σ2
w1

and σ2
w2

are close to zero,

the KF-NKP would lead to an accurate solution in terms of system identification
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(i.e., low misalignment), but its tracking capability would be reduced. On the other

hand, increasing the values of σ2
w1

and σ2
w2

improves the tracking, but by paying the

price of a higher misalignment. Based on these considerations, different strategies

can be used to set these parameters in practice. For example, in case of the regular

KF, several methods can be found in [16, 91]. Due to the nature of our system

identification problem (i.e., low-rank systems, where sparsity is a helping factor), the

solution proposed in [91] is more reliable to be adapted in case of the KF-NKP, as

explained in the following.

In (4.12)–(4.13), w1(t) and w2(t) are considered zero-mean WGN signals; thus,

their correlation matrices are diagonal and all the coefficients have the same level of

uncertainty. However, in the context of low-rank systems, we could consider a more

realistic case, with independent fluctuations of each coefficient, so that

h1(t) = h1(t− 1) + w̃1(t), (4.24)

h2(t) = h2(t− 1) + w̃2(t), (4.25)

where

w̃1(t) =

[
w̃1,0(t) w̃1,1(t) · · · w̃1,PL1−1(t)

]T
, (4.26)

w̃2(t) =

[
w̃2,0(t) w̃2,1(t) · · · w̃2,PL2−1(t)

]T
, (4.27)

with

E [w̃1,k(t)w̃1,l(t)] =

 σ2
w̃1,l

, k = l

0, k 6= l
, k, l = 0, 1, . . . , PL1 − 1, (4.28)

124



Nearest Kronecker Product (NKP) Decomposition and Low-Rank Approximation

E [w̃2,i(t)w̃2,j(t)] =

 σ2
w̃2,j

, i = j

0, i 6= j
, i, j = 0, 1, . . . , PL2 − 1. (4.29)

Thus, the correlation matrices that should appear in (4.18)–(4.19) become

Rw̃1 = diag
[
σ2
w̃1,0

, σ2
w̃1,1

, . . . , σ2
w̃1,PL1−1

]
and Rw̃2 = diag

[
σ2
w̃2,0

, σ2
w̃2,1

, . . . , σ2
w̃2,PL2−1

]
,

where diag[·] denotes a diagonal matrix.

Next, based on the state equations (4.24)–(4.25), we can express w̃1,l(t) = h1,l(t)−

h1,l(t−1), l = 0, 1, . . . , PL1−1 and w̃2,j(t) = h2,j(t)−h2,j(t−1), j = 0, 1, . . . , PL2−1,

so that

σ2
w̃1,l

= E
[
w̃2

1,l(t)
]

= E
{[
h1,l(t)− h1,l(t− 1)

]2}
, (4.30)

σ2
w̃2,j

= E
[
w̃2

2,j(t)
]

= E
{[
h2,j(t)− h2,j(t− 1)

]2}
. (4.31)

These parameters reflect the individual levels of uncertainty for the coefficients of

h1(t) and h2(t), respectively. Therefore, we obtain a version of the KF-NKP with

individual control factors, taking into consideration the variation of each coefficient

from one iteration to the next. Based on (4.30)–(4.31), we can recursively estimate

σ̂2
w̃1,l

(t) = α1σ̂
2
w̃1,l

(t− 1) + (1− α1)
[
ĥ1,l(t− 1)− ĥ1,l(t− 2)

]2
, l = 0, 1, . . . , PL1− 1,

(4.32)

σ̂2
w̃2,j

(t) = α2σ̂
2
w̃2,j

(t−1)+(1−α2)
[
ĥ2,j(t− 1)− ĥ2,j(t− 2)

]2
, j = 0, 1, . . . , PL2−1,

(4.33)

with α1 = 1 − 1/(κ1PL1), κ1 ≥ 1, and α2 = 1 − 1/(κ2PL2), κ2 ≥ 1. As we can

notice, when using α1 = α2 = 0 (i.e., without temporal averaging), the mean values

of (4.32) and (4.33) become

σ̂2
w̃1

(t) =
1

PL1

PL1−1∑
l=0

[
ĥl,1(t− 1)− ĥl,1(t− 2)

]2
=

1

PL1

∥∥∥ĥ1(t− 1)− ĥ1(t− 2)
∥∥∥2 ,
(4.34)
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σ̂2
w̃2

(t) =
1

PL2

PL2−1∑
l=0

[
ĥl,2(t− 1)− ĥl,2(t− 2)

]2
=

1

PL2

∥∥∥ĥ2(t− 1)− ĥ2(t− 2)
∥∥∥2 .
(4.35)

In order to prevent large variations of the estimators (e.g., when the system suddenly

changes), we may additionally control the parameters from (4.32)–(4.33), by limiting

the levels of uncertainty to certain thresholds. These can be chosen as constant

values (depending on the application) or even the mean values of the individual

control parameters. To this purpose, we can use (4.32)–(4.33) in conjunction with

(4.34)–(4.35), such that the final individual control factors become

σ̂2
w̃1,l

(t) = min
{
σ̂2
w̃1,l

(t), σ̂2
w̃1

(t)
}
, l = 0, 1, . . . , PL1 − 1, (4.36)

σ̂2
w̃2,j

(t) = min
{
σ̂2
w̃2,j

(t), σ̂2
w̃2

(t)
}
, j = 0, 1, . . . , PL2 − 1. (4.37)

Also, in some scenarios, when the impulse response to identify could be more
dispersive (like the acoustic echo paths), it may be preferable to limit the un-

certainty levels to a certain value that is associated to the global filter, e.g.,

(1/L)
∥∥∥ĥ(t− 1)− ĥ(t− 2)

∥∥∥2, similar to the solution used in the context of the

regular KF [16, 91].

4.2.2 Experimental Results

Simulations are performed in the context of echo cancellation, where the input signal

x(t) is either an AR(1) process [generated by filtering a WGN through a first-order

system 1/ (1− 0.9z−1)] or a speech signal, and the additive noise v(t) is white and

Gaussian. The SNR is defined related to (4.6) as σ2
y/σ

2
v , where σ2

y = E [y2(t)] is the

variance of y(t). We consider that σ2
v is available in simulations.

In the first set of experiments, we provide a toy example in order to outline the

relation between the “keywords” of the proposed approach. i.e., decomposition, low-

rank, and sparsity. To this purpose, let us consider the impulse responses (h) from
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Figure 4.2: Impulse responses of length L = 100, which are decomposed using L1 =
L2 = 10: (a) a cluster of 10 samples (alternating the amplitudes 1 and −1) padded
with zero, with rank (H) = 1; and (b) the same cluster shifted to the right by 5
samples, so that rank (H) = 2.

Fig. 4.2, of length L = 100. The first impulse response [Fig. 4.2(a)] is a cluster of 10

samples (alternating the amplitudes 1 and −1) padded with zero; in Fig. 4.2(b), this

cluster is shifted to the right by 5 samples. Therefore, the sparsity of these impulse

responses is the same. However, their decomposition could be different, in terms of

the rank of the corresponding matrix H. For example, using L1 = L2 = 10, we

obtain rank (H) = 1 for the impulse response from Fig. 4.2(a), so that we can use

P = 1 in (4.5). On the other hand, rank (H) = 2 for the impulse response from

Fig. 4.2(b), which implies that P = 2 is suitable in (4.5); in this case, for P = 1, the

approximation error related to (4.5) (evaluated in terms of the NM, in dB) results as

20log10 [‖e(1)‖ / ‖h‖] ≈ −3 dB.

In order to support the previous discussion, in Fig. 4.3, the performance of the

KF-NKP is illustrated for the identification of the impulse responses from Fig. 4.2,

using P = 1 and 2. The performance measure is the NM (in dB), which is defined as
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Figure 4.3: Normalized misalignment of the KF-NKP using σ2
w1

= σ2
w2

= 0, L1 =
L2 = 10, and P = 1 or 2, corresponding to the impulse responses from Figs. 4.2(a)
and (b). The input signal is an AR(1) process and SNR = 30 dB.

20log10

[∥∥∥h− ĥ(t)
∥∥∥ / ‖h‖]. The input signal is an AR(1) process and SNR = 30 dB.

As we can notice in Fig. 4.3(a), the impulse response from Fig. 4.2(a) can be well

identified using P = 1, while P = 2 leads to similar results. On the other hand,

as shown in Fig. 4.3(b), P = 2 is suitable for identification of the impulse response

from Fig. 4.2(a), while the misalignment level achieved for P = 1 is close to the

approximation error computed before. Concluding, the sparsity of the system helps

(by reducing the rank of the matrix H), but it is not the only factor; the proposed

approach is also related to the decomposition of the impulse response.

In the second set of experiments, we assess the performance of the proposed KF-

NKP in the context of echo cancellation, which is one of the most challenging system

identification scenarios. Three impulse responses are used, as illustrated in Fig. 4.4.

The first two impulse responses provided in Figs. 4.4(a) and (b) are network echo

paths from G168 Recommendation [55], with L = 500, while the impulse response
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Figure 4.4: Impulse responses used in simulations: (a) the first impulse response
from G168 Recommendation [55], with L = 500; (b) the first and the fifth impulse
responses (concatenated) from G168 Recommendation [55], with L = 500; and (c)
acoustic impulse response, with L = 1024.

from Fig. 4.4(c) represents an acoustic echo path of length L = 1024. In order

to evaluate the decomposition features related to these impulse responses, we can

also use the approximation error related to (4.5), in terms of the NM (in dB), i.e.,

20log10 [‖e(P )‖ / ‖h‖]. The results are presented in Fig. 4.5, where the representation

is limited to −100 dB (for better visualization). As we can notice in Figs. 4.5(a) and

(b), where L1 = 25 and L2 = 20, the network impulse responses from Figs. 4.4(a)

and (b) can be very well approximated for P � L2. On the other hand, as supported

in Fig. 4.5(c) (where L1 = L2 = 32), a larger value of P could be required for the

identification of the acoustic impulse response from Fig. 4.4(c), since its corresponding

matrix H is close to full rank. These aspects will be illustrated in the following

simulations.

First, in Fig. 4.6, the performance of the KF-NKP (using L1 = 25, L2 = 20, and

different values of P ) is compared to the regular KF, when identifying the impulse
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Figure 4.5: Approximation error (in terms of the NM) related to (4.5), for the identifi-
cation of the impulse responses from Fig. 4.4: (a) impulse response from Fig. 4.4(a), of
length L = 500, with L1 = 25 and L2 = 20; (b) impulse response from Fig. 4.4(b), of
length L = 500, with L1 = 25 and L2 = 20; and (c) impulse response from Fig. 4.4(c),
of length L = 1024, with L1 = L2 = 32.

responses from Figs. 4.4(a) and (b); the performance measure is the NM (in dB).

The impulse response changes in the middle of the simulation [from Fig. 4.4(a) to

Fig. 4.4(b)], the input signal is an AR(1) process, and SNR = 20 dB. The specific

parameters of the KF-NKP are set to σ2
w1

= σ2
w2

= 10−8; the same value is used for

the uncertainty parameter of the KF. As we can notice in the first part of Fig. 4.6,

the KF-NKP is able to identify the impulse response from Fig. 4.4(a) using P � L2;

for example, even for P = 2, the KF-NKP outperforms the regular KF. When P ≥ 3,

the KF-NKP leads to similar performances [see also Fig. 4.5(a)], since rank(H) = 3

for the impulse response from Fig. 4.4(a). On the other hand, as we can notice in

the second part of Fig. 4.6, a larger value of P is required for the identification of the

impulse response from Fig. 4.4(b). As expected [based on Fig. 4.5(b)], the KF-NKP

using P = 2 cannot provide an accurate result in this case; however, when P = 3,
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Figure 4.6: Normalized misalignment of the KF-NKP (using different values of P )
and KF, for the identification of the impulse responses from Figs. 4.4(a) and (b). The
impulse response changes after 3 seconds. The input signal is an AR(1) process, L =
500, and SNR = 20 dB. The KF-NKP uses L1 = 25, L2 = 20, and σ2

w1
= σ2

w2
= 10−8;

the KF uses the same value of its uncertainty parameter.

its performance is similar to the KF, while for P ≥ 4, the KF-NKP outperforms its

regular counterpart.

A similar experiment is reported in Fig. 4.7, for the identification of the acoustic

impulse response from Fig. 4.4(c); an abrupt change is introduced in the middle

of simulation, by shifting the impulse response to the right by 12 samples. The

decomposition is performed using L1 = L2 = 32. As we can notice, the KF-NKP

requires a larger value of P in order to reach the performance of the regular KF;

however, this value is reasonably low as compared to L2.

The influence of the uncertainty parameters (σ2
w1

and σ2
w2

) on the performance

of the KF-NKP algorithm is illustrated in Fig. 4.8, when identifying the impulse

responses from Figs. 4.4(a) and (b). The echo path changes in the middle of the

simulation, the input signal is an AR(1) process, and SNR = 20 dB. As outlined in

131



Adaptive Algorithms for Multilinear in Parameters Structures

Time (seconds)

0 1 2 3 4 5 6

M
is

a
lig

n
m

e
n

t 
(d

B
)

-30

-25

-20

-15

-10

-5

0

5

KF-NKP, P = 4

KF-NKP, P = 6
KF-NKP, P = 8

KF-NKP, P = 10

KF

Figure 4.7: Normalized misalignment of the KF-NKP (using different values of P )
and KF, for the identification of the impulse response from Fig. 4.4(c). The impulse
response changes after 3 seconds. The input signal is an AR(1) process, L = 1024,
and SNR = 20 dB. The KF-NKP uses L1 = L2 = 32 and σ2

w1
= σ2

w2
= 10−8; the KF

uses the same value of its uncertainty parameter.

Section 4.2.1, the values of σ2
w1

and σ2
w2

lead to a compromise between fast conveg-

ence/tracking and low misalignment, so that a proper estimation of these parameters

is required. These aspects are supported in Fig. 4.8, where the KF-NKP uses P = 5

and different values of the uncertainty parameters, including the estimated ones [based

on (4.36)–(4.37)]. Clearly, lower values of σ2
w1

and σ2
w2

improve the performance in

terms of misalignment, but at the price of a slower tracking reaction. Most impor-

tant, the estimators from (4.36)–(4.37) lead to a proper compromise between the

performance criteria.

Next, in Fig. 4.9, the performances of the KF-NKP and KF are compared, when

identifying the impulse response from Fig. 4.4(c) and using the practical estimators of

the uncertainty parameters. To this purpose, the KF-NKP uses (4.36)–(4.37), while

the regular KF involves the solution proposed in [91], which is similar to the individual
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Figure 4.8: Normalized misalignment of the KF-NKP, for the identification of the
impulse responses from Figs. 4.4(a) and (b). The impulse response changes after 6
seconds. The input signal is an AR(1) process, L = 500, and SNR = 20 dB. The
KF-NKP uses L1 = 25, L2 = 20, P = 5, and different values of σ2

w1
and σ2

w2
, including

the estimation from (4.36)–(4.37).

control approach from Section 4.2.1. Both algorithms use the same threshold for the

uncertainty parameters, which is evaluated based on the global filter (as discussed in

the end of Section 4.2.1). The KF-NKP algorithm uses L1 = L2 = 32 and different

values of P . In this experiment, the input signal is an AR(1) process and SNR =

20 dB. As we can notice in Fig. 4.9, the KF-NKP achieves a similar performance as

compared to the regular KF, even for a reasonably low value of P .

Finally, the performance of the proposed KF-NKP is compared to the recently

developed RLS-NKP algorithm [86]. It is known that the KF and the RLS algorithms

have striking resemblances [97]. However, the additional parameters specific to the

KF allow for an additional control of the algorithm, which could further improve

the performance [16]. Consequently, a similar behavior is expected in case of the

KF-NKP and the RLS-NKP algorithm. In Figs. 4.10 and 4.11, the performances of
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Figure 4.9: Normalized misalignment of the KF-NKP (using different values of P )
and KF, for the identification of the impulse response from Fig. 4.4(c). The impulse
response changes after 3 seconds. The input signal is an AR(1) process, L = 1024, and
SNR = 20 dB. The KF-NKP uses L1 = L2 = 32, while the specific parameters σ2

w1

and σ2
w2

are estimated based on (4.36)–(4.37); the KF uses the uncertainty parameter
estimated as in [91].

these algorithms are compared for the identification of the impulse responses from

Figs. 4.4(a) and (c), respectively. In both scenarios, the impulse response changes in

the middle of the simulation (by shifting to the right by 12 samples). The input signal

is a speech sequence and SNR = 20 dB. In Fig. 4.10, the algorithms use L1 = 25,

L2 = 20, and P = 5, while in Fig. 4.11 the setup is L1 = L2 = 32 and P = 10.

In both cases, the KF-NKP uses the estimated uncertainty parameters (presented in

Section 4.2.1). The specific parameters of the RLS-NKP algorithm are the forgetting

factors [86], which are set to λ1 = λ2 = 0.999 in Fig. 4.10, while in Fig. 4.11 their

values are λ1 = λ2 = 0.9999. As we can notice in Fig. 4.10, the RLS-NKP algorithm

and the KF-NKP achieve a similar convergence rate (and tracking reaction), but the

KF-NKP reaches a lower misalignment level. The gain is even more apparent in
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Figure 4.10: Normalized misalignment of the KF-NKP and RLS-NKP algorithm (us-
ing L1 = 25, L2 = 20, and P = 5), for the identification of the impulse response
from Fig. 4.4(a). The impulse response changes after 6 seconds. The input signal
is a speech sequence, L = 500, and SNR = 20 dB. The KF-NKP uses σ2

w1
and σ2

w2

estimated based on (4.36)–(4.37); the RLS-NKP algorithm uses the forgetting factors
λ1 = λ2 = 0.999.

Fig. 4.11, where the KF-NKP outperforms the RLS-NKP algorithm in terms of both

performance criteria.

4.3 Summary and Conclusions

In this chapter, we have started by introducing a newly developed approach for the

identification of low-rank systems, based on the NKP decomposition and low-rank

approximation. We continued by deriving a KF tailored for the identification of low-

rank systems. The proposed KF-NKP is based on the NKP decomposition of the

impulse response, together with low-rank approximation. Consequently, a system

identification problem of size L = L1L2 could be reformulated using two smaller fil-

ters of lengths PL1 and PL2, with P � L2. Hence, it is efficient for the identification
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Figure 4.11: Normalized misalignment of the KF-NKP and RLS-NKP algorithm (us-
ing L1 = L2 = 32 and P = 10), for the identification of the impulse response from
Fig. 4.4(c). The impulse response changes after 6 seconds. The input signal is a
speech sequence, L = 1024, and SNR = 20 dB. The KF-NKP uses σ2

w1
and σ2

w2
es-

timated based on (4.36)–(4.37); the RLS-NKP algorithm uses the forgetting factors
λ1 = λ2 = 0.9999.

of long length (low-rank) impulse responses, like the echo paths. In this case, the

proposed KF-NKP achieves a better performance, but also a lower computational

complexity as compared to the regular KF. Moreover, due to an additional control of

its specific parameters, the KF-NKP is also able to outperform its RLS-based coun-

terpart that was recently developed in [86]. Simulations performed in the framework

of echo cancellation support these advantages.
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Chapter 5

An Adaptive Solution for

Nonlinear System Identification

5.1 Motivation

This short chapter presents a new and very simple method to perform identification

of nonlinearities in systems that are supposed to be linear. The aim of this study

is somewhat different from the rest of the work presented before in this thesis. The

reason is that the focus is not on the study of multilinear systems, but rather on

solving the problem of small nonlinearities in supposedly linear systems. In this

context, the proposed solution offers an improvement with respect to the previous

approaches, which lies in the low computational complexity of the solution and the

convenient possibility of online evaluation. Simulation results show that the proposed

method provides good performance in terms of coefficients identification, resulting in

both low steady-state error and high convergence rate of the algorithm, which justifies

its applicability in practice. The results shown in this chapter were published in [98].

There are two different ways of identifying nonlinearities in a system: the Volterra-

based approach and the method based on neural networks. The first method is a
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well-known solution that has been proposed in the 1960s and has been continuously

developed and improved since then [99, 100, 101]. The approximation of the nonlinear

systems is performed using a finite sum of the Volterra series expansion that relates the

system’s inputs and outputs. This method has been used in different applications,

for example, [102, 103, 104], among others. Although the Volterra filter [105] is a

popular choice, one of its main drawbacks is its high computational complexity. On

the other hand, neural networks represent a newer topic in the research community,

which has been analyzed during the past decades and has proven to give excellent

results in different applications, such as classification problems or nonlinear adaptive

filters design [33, 106]. Despite its higher computational efficiency, there is still a

considerable amount of complexity in performing nonlinearities identification using

neural networks.

The method that we propose distinguishes itself by its simplicity. Although not

very general, it is applicable in situations where supposedly linear systems present

small nonlinearities. It allows online evaluation of the nonlinearities of sensors, ampli-

fiers, transducers, without having to use a special measurement session. It is based on

the idea that in case of small nonlinearities, the Taylor series expansion of a function

around zero has a finite number of significant coefficients. The problem of identifying

the system translates into finding the unknown coefficients by means of an adaptive

algorithm. In this context, the purpose becomes to determine the coefficients of the

Taylor series expansion and, consequently, to determine the nonlinearities of the sys-

tem. A similar idea was presented in [39] and [17], but in a different context (echo

cancellation).

In the following subchapter, the nonlinearities identification system model is intro-

duced and the solution obtained according to the optimal filtering theory is presented.

Then, the adaptive approach in solving the problem is described in 5.3. Subchapter

5.4 illustrates the experimental results, showing the effectiveness of the proposed so-
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lution, while the last section contains a brief summary and discussion to conclude the

subject.

5.2 The Nonlinearities Identification Problem

Let x be a zero-mean real-valued random input signal and let g(x) be a nonlinear,

bijective, odd-type function, which is applied to the input signal. As examples, we

can consider the exponential limiter function [i.e., g(x) = (1−exp(−α|x|))sign(x), 0 <

α < 1], the arctangent function [i.e., g(x) = arctan(αx), 0 < α < 1], or any other

function that satisfies the conditions. We define the vector containing the first M

powers of the input as

x(n) = [x(n), x2(n), ..., xM(n)]T , (5.1)

where T denotes transposition.

Assuming the function can be expanded in a Taylor series around the origin, it

means that by truncating the series we can write it in the following form:

g(x) ∼=
M∑
k=1

(gkx
k). (5.2)

The function is characterized by the vector of coefficients:

g = [g1, g2, ..., gM ]T . (5.3)

Our goal is to obtain an estimation of the coefficient vector:

ĝ(n) = [ĝ1(n), ĝ2(n), ..., ĝM(n)]T , (5.4)

based on the knowledge of the input signal x(n) and by measuring the unknown
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Figure 5.1: System model.

system output corrupted by the measurement noise:

d(n) = gTx(n) + w(n). (5.5)

The number M of coefficients that need to be found depends on the particular

function; the greater M , the more precise is the Taylor expansion. A representation

of this situation can be found in Fig. 5.1, where x(n) is the input signal, the sum of

products
∑M

k=1(gkx
k) is denoted by y(n), and the error e(n) = d(n)− y(n) is used in

order to perform the adaptation.

By denoting the output error:

e(n) = d(n)− ĝTx(n) = (gT − ĝT )x(n) + w(n) (5.6)

and assuming the measurement noise has zero mean and is uncorrelated to the input

signal, our initial problem translates into the minimization of the MSE, J(n) =

E[e2(n)], with respect to the vector ĝ. It can be noticed that the MSE can be

expressed as

J(n) = σ2
d − 2ĝTp + ĝTRĝ, (5.7)
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where σ2
d = E[d2(n)] is the desired signal variance, p = E[x(n)d(n)] is the cross-

covariance between the input signal x(n) and the desired signal d(n), and R =

E[x(n)xT (n)] is the covariance matrix of the vector x(n). The optimal solution is

given by the Wiener-Hopf equations [107]:

go = R−1p. (5.8)

This solution can only be used when the unknown coefficients are fixed (usually

they may change in time) and the involved statistical expectations are known. In

order to overcome these limitations, we propose the use of the adaptive approach

instead.

5.3 The Adaptive Approach

Firstly, one must note that, although the Wiener-Hopf equations are related to finding

the optimal coefficients of a linear filter, the theory does not imply that the vector

x(n) needs to contain successive delayed versions of x(n). In our case, this vector

contains M successive powers of x(n). Consequently, a more attractive solution would

be to use an adaptive algorithm, derived from the Wiener-Hopf theory, to estimate

the optimal solution. One of the simplest algorithms that may be used is the LMS

algorithm, with the update:

ĝ(n) = ĝ(n− 1) + µx(n)ea(n), (5.9)

where ea(n) = d(n)− ĝT (n−1)x(n) is the a priori error, which is computed using the

coefficients at time index n − 1 (i.e., from the previous step) and the new updated

data. The step-size µ has to be chosen according to 0 < µ < 2
Mσ2

x
, in order to

ensure the algorithm convergence [1, 3, 108], where σ2
x is the mean power of the input
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signal. Alternatively, the NLMS algorithm can be used, which is equivalent to an

LMS algorithm with a variable step-size given by

µ(n) =
α

||x(n)||2 + δ
, (5.10)

where α is the normalized step-size (0 < α < 2), which should be chosen in such a

way to ensure a good compromise between the convergence rate and the asymptotic

MSE J(∞), and δ is the regularization parameter [46].

The particular structure of the input vector x(n) leads to the necessity of an

analysis of its covariance matrix:

R = E{x(n)xT (n)} = [ri,j], i, j = 1, ...,M, (5.11)

ri,j = E{xi+j(n)}. (5.12)

Some remarks result from here regarding R, which are stated in the following.

• R is symmetric and positive semidefinite, but it is not Toeplitz (the elements

of the main diagonal are not equal).

• It can be noticed that the value of each element of R is a function of the sum

of the indices i and j. This means that R is a Hankel matrix.

• For an input signal with zero mean and an even probability density function,

ri,j = 0 for i + j odd. This means that a number of matrix diagonals, parallel

to the main diagonal, have all zero elements.

Two issues have to be considered. First of all, the matrix must be non-singular

[see (5.8)]. Second, some information about the condition number is of interest,

because it is well-known that in the case of an ill-conditioned covariance matrix (very

large condition number), the convergence rate of the adaptive algorithm is very slow

[1, 3, 108].
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Some examples of covariance matrix elements computation for well-known signals

are as follows.

• White and Gaussian, with zero mean and variance σ2
x. In this case it follows

that

E{xi+j(n)} =


0, for i+ j odd

3 · 5 · . . . (i+ j − 1)σi+jx , for i+ j even

(5.13)

• Uniformly distributed between −L and L. Then,

E{xi+j(n)} =


0, for i+ j odd

(
√
3σx)i+j

i+j+1
, for i+ j even

(5.14)

• White and Gaussian, with zero mean and variance σ2
x, symmetrically clipped

at level L. The condition number in this case was computed using Matlab

and plotted in Fig. 5.2 as a function of the variance, along with the condition

number for the previous two cases.

From Fig. 5.2 it follows that if we want the covariance matrix not to be ill-

conditioned, then ideally, regardless of the type of input signal that is chosen, its

variance needs to be somewhere in the interval [0.3; 0.8]; moreover, if the variance

increases above approximately 1 or decreases below approximately 0.3, the condition

number of the matrix R also increases a lot, the matrix becoming ill-conditioned.

This leads to the idea that the variance will be chosen between reasonable limits. In

practice, this is feasible, considering that real systems do not use inputs of very large

(or too small) power. Hence, we can conclude that any of the signals presented can

be used, provided that its power is between acceptable limit values.
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Figure 5.2: Condition number of R as a function of the signal’s variance.

5.4 Experimental Results

Simulations have been performed using as input of the filter the first M powers of a

zero mean Gaussian signal limited in amplitude to ±1, where M is the length of the

NLMS filter (in our case, 6) and as function whose coefficients need to be identified,

a polynomial function with nonzero odd power coefficients, respectively null valued

coefficients corresponding to the even powers. The value of the normalized step-size

α in (5.10) is 0.5. Fig. 5.3 illustrates the evolution of the coefficients for a polynomial

of the form: g(x) = x+ 0.3x3 + 0.2x5.

The black dotted lines represent the actual coefficients; we can see that all the

computed coefficients converge to the optimal values after less than 1000 iterations.

In Fig. 5.4, the values of the average squared error for 1000 simulations are plotted

in dB. Fig. 5.5 shows the graphical representation of the polynomial function in two

cases: when using the actual coefficients (which represent the optimal coefficients go),

on one hand, and when using the coefficients computed using our method, on the other

hand.
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Figure 5.3: Evolution of the coefficients gk computed using the NLMS algorithm for
a polynomial function.

Figure 5.4: Squared error values (in dB).

We can see from Fig. 5.3 that the convergence of the algorithm is fast, but at the

same time, the calculated coefficients are very close to their actual values which were

known apriori. This can be observed from Fig. 5.4, which shows that the value of the

squared error is smaller than -20 dB even from the first iterations of the algorithm, as

well as from Fig. 5.5, which illustrates an almost perfect overlap between the graph of

the function g when using the two sets of coefficients, i.e., the ones that were initially

generated and the ones computed using the proposed approach. The results obtained
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Figure 5.5: Representation of the polynomial function and the reconstructed function
when the input x ∈ [−1; 1].

through simulations are very promising, proving that the method is suitable to be

used in this kind of problems, where the coefficients of a nonlinear system need to be

identified.

The behavior of the algorithm when applied to a system that changes in time

was also studied. Simulations were conducted using the same polynomial function

described before for the first half of the experiment, then the coefficients were changed:

the term corresponding to the third power, whose initial value was 0.3, became 0.4,

whereas the fifth power coefficient switched its value from 0.2 to 0.1. Fig. 5.6 shows

the evolution of the coefficients. The black and red dotted lines represent the actual

values of the coefficients (black - for the first half of the time, red - the values after

the change in the system occured). It can be seen that the algorithm was able to

track the changes in the system and the coefficients converged to their new values in

less than 3000 iterations after the change.

Simulations were also repeated for other nonlinear functions, in order to prove

that the results above are still valid. In Fig. 5.7, the original arctangent function

is represented along with the function obtained using relation 5.2 from the first six
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Figure 5.6: Evolution of the coefficients gk when a change in their values occurs.

significant coefficients in the Taylor series expansion, computed using the same NLMS

algorithm. Because in reality, the number of coefficients in the Taylor series expansion

is infinite, we would expect to have a noticeable difference between the plot of the

actual function g(x) = arctan(x) for x ∈ [−1, 1] and the plot of the function g(x) =∑M
k=1(gkx

k), because of the approximation in the equality between the two. However,

Fig. 5.7 shows that the plots of the two functions overlap almost perfectly, which

proves that the arctangent function can be very accurately expanded by only taking

into consideration the first six terms of the Taylor series, on one hand, and that our

algorithm is very efficient in computing these coefficients, on the other hand.

5.5 Summary and Conclusions

In this chapter, we proposed a new method for performing a simple and fast identi-

fication of the nonlinearities in a system, by using the well-known NLMS algorithm

and by taking advantage of the fact that the Taylor series expansion of a function

has only a finite number of significant coefficients.
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Figure 5.7: Representation of the arctangent function and the reconstructed function
when the input x ∈ [−1; 1].

The great advantages of the proposed solution are its simplicity, as well as the

fact that it can be performed online, without the need to allocate time and a special

setup for the measurements. Simulations have been conducted on different types

of functions and the results have shown that the method gives very good results,

with small error values and high convergence speed. Despite the method not being

generally applicable, it may help decrease both the complexity and the computation

time of the nonlinear system identification process, in situations where its usage is

suitable.

A further simplification of the presented method would rely on the fact that the

functions which were considered are odd functions, which means that the coefficients

of their Taylor series expansion corresponding to the even powers will be null. If we

take that into account when developing the LMS-based algorithm, we can compute

only the odd terms, in this way significantly decreasing the length of the adaptive

filter.

Future work might also include research on the impact that a very small coef-

ficient has on the efficiency of the identification: in the case when the system has
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coefficients with very different values among them (even a few orders of magnitude),

the computation of the smallest coefficients will probably not have a high enough

sensitivity.
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Chapter 6

Summary of Contributions and

Future Work

This thesis aimed to present our contributions during the past three years to the field

of nonlinear system identification, with a special focus on multilinear systems.

Because the conclusions and remarks were inserted at the end of each chapter,

there is no need to repeat them here. However, in the following we list the major

original contributions of this work, divided by chapters. Since all contributionsare

either published or accepted for publication, we provide for each one the correspond-

ing reference.

In Chapter 2:

– Development of an optimized LMS algorithm for the identification of bilinear

forms (OLMS-BF) [20];

– A mathematical analysis of the properties of a system mismatch covariance

matrix (SMCM) in the LMS algorithm [22];

– Derivation of a Kalman filter tailored for bilinear forms (KF-BF), together with

a computationally simplified version (SKF-BF) [19];
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– A comparative study of the SKF-BF and OLMS-BF algorithm, highlighting the

similarities between the two [21];

– Development of an improved proportionate affine projection algorithm for the

special case of BF (IPAPA-BF) [23];

– Illustration of the experimental results obtained for each proposed solution,

which show the algorithms’ performance [20, 22, 19, 21, 23].

In Chapter 3:

– A Wiener filter conceived for the identification of trilinear forms, comprising a

direct and an iterative version [67];

– An LMS algorithm suitable for TF (LMS-TF), along with a normalized version

(NLMS-TF) [66];

– Simulations to prove the good behavior of the proposed approaches [67, 66].

In Chapter 4:

– A Kalman filter based on the nearest Kronecker product decomposition com-

bined with the low-rank approximation (KF-NKP) [87];

– A study of how to estimate the KF-NKP parameters, such as to ensure good

performance [87];

– Experimental study of the system identification performance [87].

In Chapter 5:

– A simple technique for the identification of nonlinear systems possessing small

nonlinearities [98];

– Particular case of a function on which the method is applied and illustration of

the results [98].
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Future work will focus on extending the techniques displayed in this thesis to

higher-order multilinear structures. Given the numerous applications of nonlinear

and, in particular, multilinear system identification in the development of technolo-

gies nowadays, it would be of interest to obtain a general method for dealing with such

problems. In this context, it would be highly interesting to assess the NKP decompo-

sition approach for the identification of higher-order complex impulse responses, such

as real-world network and acoustic echo paths which are not perfectly decomposable

in a tensorial form. This requires the use of higher-order tensors for the mathemat-

ical formalization and analysis of the problem, which is not straight-forward in the

context of real-world systems.
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[67] L.-M. Dogariu, S. Ciochină, J. Benesty, and C. Paleologu, “An Iterative

Wiener Filter for the Identification of Trilinear Forms,” in Proc. IEEE International

Conference on Telecommunications and Signal Processing (TSP), (Budapest, Hun-

gary), 1–3 July 2019 (Best Paper Award)
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proportionate NLMS algorithm for the identification of sparse bilinear forms,”
in Proc. IEEE TSP, pp. 698–701, 2018.

[53] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal
projection to an affine subspace and its properties,” Electron. Commun. Jpn.,
vol. 67-A, pp. 19–27, May 1984.

[54] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A generalized proportionate
variable step-size algorithm for fast changing acoustic environments,” in Proc.
IEEE ICASSP, pp. IV–161–IV–164, 2004.

[55] “Digital Network Echo Cancellers.” https://www.itu.int/rec/T-REC-G.

168/en, 2002. Online; accessed on 16 April 2019.

[56] S. Haykin and B. Widrow, (Eds.) Least-Mean-Square Adaptive Filters. Wiley:
Hoboken, NJ, USA, 2003.

[57] A.I. Sulyman and A. Zerguine, “Convergence and steady-state analysis of a
variable step-size NLMS algorithm,” Signal Processing, vol. 83, pp. 1255–1273,
2003.
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[85] M. Boussé, O. Debals, and L. De Lathauwer, “A tensor-based method for large-
scale blind source separation using segmentation,” IEEE Trans. Signal Process-
ing, vol. 65(2), pp. 346–358, Jan. 2017.

[86] C. Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, and S.
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