COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Dept. of Applied Electronics and Information
	Engineering
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	Licence (engineering)
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of the course			Neural networks and fuzzy systems				
2.2 Lecturer Prof. Dr. Ing. Georgeta-Mihaela UNGUREANU			REANU				
2.3 Instructor for practical activities			Ş.L. Dr. Ing. Cristina-Elena STOICA				
2.4 Year	IV	2.5	8	2.6 Evaluation	Verification	2.7 Course	Compulsory
of studies		Semester		type		choice type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	3	3.2 course	2	3.3 practical activities	1
3.4 Total hours in the curricula, out of which	42	3.5 course	28	3.6 practical activities	14
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					25
Supplemental documentation (library, electronic access resources, in the field, etc)					3
Preparation for practical activities, homeworks, essays, portfolios, etc.					5
Tutoring					0
Examinations				3	
Other activities				0	
3.7 Total hours of individual study	36				
3.0 Total hours per semester	78				

5.9 Total nouis per semester	10	
3. 10 Number of ECTS credit points	3	

4. Prerequisites (if applicable)

4.1 curricular	Calculus, Algebra and geometry, Data structures and algorithms, Digital
	signal processing, Medical electronics and informatics
4.2 competence-based	Basic knowledge of mathematics, digital signal processing, decision and
	estimation, and programming (proficiency in Matlab)

5. Requisites (if applicable)

5.1 for running the	Not applicable, according to current PUB regulations.
course	
5.2 for running of the	Compulsory presence at laboratory classes, according to current PUB
applications	regulations.

6. Specific competences

Professional	C4. Solving neural networks and fuzzy systems problems by using the
competences	architecture characteristics and running principles of hardware/software
_	structures:
	- identification of classes of problems and solving methods specific to
	neural networks and fuzzy systems;

	- using interdisciplinary knowledge, solution patterns and tools,
	performing experiments and interpreting the results.
Transversal	CT1. The methodical analysis of the daily issues, identifying the
competences	problems for which well-known solutions are already available, thus
-	accomplishing the professional tasks

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course introduces the students into the basic theory on neural
of the course	networks and fuzzy systems. Different neural networks and fuzzy
	systems are analyzed discussing their training strategy, and implemented
	using different general (C, C++) and dedicated (Matlab) SWs.
	The course addresses also the application of neural networks and fuzzy
	systems in medicine.
4.2 Specific	The specific objectives of the course are related to the acquisition of
objectives	knowledge and abilities related to develop some applications based on
	neural networks and fuzzy systems using a dedicated programming
	environment (Matlab). The following aspects are mostly considered:
	- the students familiarize themselves with the basic neural networks and
	fuzzy systems;
	- the students can identify an artificial intelligence problem and propose
	solutions based on neural networks and fuzzy systems.

8. Content	
------------	--

8.1 Lectures	Teaching techniques	Remarks
Introduction: Neural networks and fuzzy	Teaching is based on the usage of	1 hour
systems characteristics; Neural network	video projection (for communication	
classification; Fuzzy sets and fuzzy logic	and demonstration); the oral	
operators; Fuzzy principles in neural	communication is based on face-to-	
networks	face presentations and	
Neural networks learning methods:	problematizations.	3 hours
Unsupervised learning (Hebbian,	The course materials are the course	
competitive, Boltzmann); Supervised	notes and handouts and proposed	
learning (BKP); Reinforcement learning.	exercises (both theoretically and	
Feed forward neural networks: Perceptron;	computer-aided solved). All materials	6 hours
Multilayer perceptron; BKP learning	are available in electronic form via	
algorithm; RBF neural network; Fuzzy	the course site (Moodle).	
multilayer perceptron.		
Recurrent neural networks: Basic elements;		3 hours
Associative memories; Hopfield neural		
network		
Competitive neural networks: Hamming		6 hours
network; LVQ network; Kohonen network		
(SOM); Adaptive resonance theory (ART);		
Fuzzy ART algorithm.		
Fuzzy systems: Fuzzyfication rules; Rules		3 hours
base development; Defuzzyfication		
methods; Mamdani system; Sugeno system;		
Neuro-fuzzy systems		
Recurrent Neural Network: Main concepts,		2 hours
Associative Memories, Hopfield Neural		
Network		
Competitive Neural Network: Hamming		4 hours

Network; LVQ Network; Kohonen Network	
(SOM); Adaptive Resonance Theory	
(ART); Fuzzy Algorithm ART.	

Bibliography

1) M. Ungureanu, Analiza și prelucrarea semnalelor – aplicații în ingineria biomedicală, MATRIXROM, 2013, ISBN 9789737559463.

2) M. Ungureanu, R. Strungaru, Rețele neurale și sisteme fuzzy - Note de curs, în curs de editare.
3) Toshinori Munakata, Fundamentals of the New Artificial Intelligence. Neural, Evolutionary, Fuzzy and More, Second Edition, Springer-Verlag 2008, ISBN 978-1-84628-838-8.

4) N. K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, The MIT Press, 1998, ISBN 0-262-11212-4.

5) M. Akay, Handbook of neural engineering, John Wiley&Sons, 2007, ISBN 0-978-0-470-05669-1.

6) S. Haykin, Neural Networks, 2nd Edition, Prentice Hall, 1999, ISBN 0-13-273350 -1.

7) Gurney K., An Introduction to Neural Networks, UCL Press, 1997, ISBN 1-85728-503-4

8) R. Fuller, Introduction to Neuro-Fuzzy Systems, Springer Verlag, 2000,

ISBN: 978-3-7908-1256-5

8.2 Practical applications	Teaching techniques	Remarks
Matlab: Multilayer perceptron in medical	Teaching is based on the video	2 hours
applications	projection usage (for communication	
Matlab: Fuzzy perceptron in medical	and demonstrations); the oral	2 hours
applications	communication is based on face-to-face	
Matlab: RBF neural network application	presentations and problematizations.	2 hours
Matlab: Vector quantization using	Students perform simulations,	2 hours
competitive networks	implementations, tests and evaluate	
Matlab: ART application with medical	independently the same problems by the	2 hours
examples	continuous use of the computer and	
Matlab: Fuzzy systems application	Matlab environment. The didactical	2 hours
Final lab examination	materials are the theoretical and	2 hours
	practical instructions from the lab guide.	

Bibliography:

1) M. Ungureanu, Analiza și prelucrarea semnalelor – aplicații în ingineria biomedicală, MATRIXROM, 2013, ISBN 9789737559463.

2) M. Ungureanu, R. Strungaru, Rețele neurale și sisteme fuzzy - Note de curs, în curs de editare.
3) Toshinori Munakata, Fundamentals of the New Artificial Intelligence. Neural, Evolutionary, Fuzzy and More, Second Edition, Springer-Verlag 2008, ISBN 978-1-84628-838-8.

4) N. K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, The MIT Press, 1998, ISBN 0-262-11212-4.

5) M. Akay, Handbook of neural engineering, John Wiley&Sons, 2007, ISBN 0-978-0-470-05669-1.

6) S. Haykin, Neural Networks, 2nd Edition, Prentice Hall, 1999, ISBN 0-13-273350 -1.

7) Gurney K., An Introduction to Neural Networks, UCL Press, 1997, ISBN 1-85728-503-4

8) R. Fuller, Introduction to Neuro-Fuzzy Systems, Springer Verlag, 2000,

ISBN: 978-3-7908-1256-5

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Artificial intelligence, and especially neural networks and fuzzy systems, are more and more applied in electronics, the industry following closely this trend. The industry has a strong demand for qualified engineers, specialized in neural networks and fuzzy systems, with a solid background in electronics and information technology systems, so that it can be able to follow new hardware and software development.

The course curriculum answers these trends regarding the developments and evolution requirements, demanded by the general framework of the European economy of services in the IC&T domain. The current technological advances in electronic devices enable countless applications, ranging from consumer usage (smartphone and digital camera technology), medical applications (products and services for biomedical processing), military applications (remote sensing applications), security purposes (biometry and surveillance), industrial automation (quality inspection and control), robotics (man-machine interfaces) and many others.

This provides graduates with the appropriate skills and training requirements according to current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and structure, and the skills and international openness it offers to students.

10. Evaluation 10.3 Weight in Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods the final mark 10.4 Lectures knowledge Two written tests, of equal 80% _ of the fundamental weight, during the semester, theoretical knowledge; at pre-defined dates; the - knowledge of the solving subjects cover the entire specific problems; course material, being a - comparative analysis of between synthesis the theoretical comparative theoretical the knowledge methods/techniques. and the application of the theory when solving problems and exercises. 10.5 - knowledge of the general The final lab exam consists 20% Practical design of applications an neural of a practical examination, network/fuzzy system for during which the student a simple, given problem; must solve (implement, test, - knowledge of the coding proof of functioning) а [Matlab] of an neural practical problem. network/fuzzy system; proof of correct functioning of an neural network/fuzzy system. 10.6 Minimal performance standard - modelling a simple real problem using a neural network/fuzzy system; - design, implementation, and testing of a simple artificial intelligence based solution of a problem, involving a neural network/fuzzy system. Date Instructor for practical activities Lecturer 01.10.2013 Prof. Dr. Ing. G.-M. Ungureanu

Date of department approval

S.L. Dr. Ing. C.-E. Stoica

Director of Department,

07.10.2013

Prof. Dr. Ing. S. Paşca