COURSE DESCRIPTION

/11
University POLITEHNICA Bucharest
Electronics, Telecommunications and Information
Technology
Department of applied electronics and information
engineering
Electronic Engineering, Telecommunications and
Informational Technologies
License
Applied Electronics

1. Program identification information

2. Course identification information

2.1 Name of the course			Computer aided analysis of power electronics circuits				
2.2 Lecture	2 Lecturer Asist.prof. PhD. Mihail Teodorescu						
2.3 Instruc	2.3 Instructor for practical activities		Asist.prof. PhD. Mihail Teodorescu				
2.4 Year	IV	2.5	II	2.6	Verification	2.7	Optional
of studies		Semester		Evaluation Course		_	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	4	3.2	2	3.3 practical	2
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	28	3.6 practical	28
which		course		activities	
Distribution of time					hours
Study according to the manual, course su	upport,	bibliograph	ny and	hand notes	28
Supplemental documentation (library, electronic access resources, in the field, etc)					10
Preparation for practical activities, homeworks, essays, portfolios, etc.				5	
Tutoring				0	
Examinations				5	
Other activities				0	
3.7 Total hours of individual study	4	8			
3.9 Total hours per semester	1	04			
3. 10 Number of ECTS credit points	4				

4. Prerequisites (if applicable)

4.1 curricular	Industrial electronics Signal processing
4.2 competence-based	Knowledge about power electronic converters, control systems

5. Requisites (if applicable)

5.1 for running the	-
course	
5.2 for running of the	Mandatory presence at laboratory (accordiong to UPB studies
applications	regulations)

6. Specific competences

Professional	C5
competences	Applying of basic knowledge, concepts and methods regarding ; power electronics, automated systems, electrical energy management, electromagnetical compatibility Use of simulation platforms (PSpice, PSIM, MatLab) for solving power electronics specific problems.
Transversal competences	Methodical analysis of the encountered problems.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course familiarizes students with analysis and design techniques		
of the course	and methods, using simulation tools. The specific applicability of		
	different simulation platforms for power electronic converters and		
	systems are studied, generally and detailed.		
4.2 Specific	- Simulation of power electronic converters		
objectives	- Simulation of drivers		
	- Simulation of control systems		
	- Simulation of power loads		
	- Simulation of renewable energy generation		
	- Simulation of power electronics systems		

8. Content

8.1 Lectures	Teaching techniques	Remarks
Power electronics system	Teaching is aided by use of	2 hours
components and their	videoprojector, covering the	
interaction	demonstrative and	
Simulation methods for a	communication function. The	4 hours
power electronics system	oral methods used are the	
Numerical methods for	expositive and	4 hours
differential equations solving	problematisation methods	
Component simulation and	applied directly. Course	10 hours

	I	
analysis of power electronics	materials are course notes and	
systems with specific	materials and proposed	
simulation software.	problems.	
Comparative study.		
Co-simulation methods.		4 hours
Typical applications.		4 hours
Bibliography		
1) Muhammad H. Rashid, Hasa	an M. Rashid, SPICE for Power	Electronics and Electric Power,
2006 by Taylor & Francis Grou	p, LLC.	
2) Christophe P. Basso, Switch-	Mode Power Supplies, Spice Sin	nulations and Practical Designs -
2008 The McGraw-Hill Compar	nies	
3) Luis Castan er and Santiago	Silvestre: Modelling Photovoltaic	c Systems using PSpice
2002 John Wiley & Sons Ltd, S	pain	
4) PSIM® User's Guide, 2001-	2014 Powersim Inc.	
8.2 Practical applications	Teaching techniques	Remarks
L1. Introduction in computer	Teaching is aided by use of	4 hours
aided analysis. ORCAD	videoprojector, covering the	
platform	demonstrative and	
L2. PSpice modeling of power	communication function. The	4 hours
electronic switches.	oral methods used are the	
Parameters and switching	expositive and	
characteristics.	problematisation methods	
L3. Creation of new models in	applied directly. The students	4 hours
PSpice and applications.	simulate, test and evaluate	
L4. Analyais of power	independently the same	4 hours
electronics circuits with PSIM	problem by using the	
L5. Switching power supplies	computer and specific	4 hours
controlled with specialized	software. Didactical materials	
circuit MC34063	are laboratory platforms.	
L6. Subcircuit simulation in		4 hours
PSIM. Compoarative study		
PSIM-PSpice.		
L7. Matlab-SIMULINK for		4 hours
power electronics. MatLab-		
PSIM co-simulation.		
Bibliography		

Bibliography

1) Muhammad H. Rashid, Hasan M. Rashid, SPICE for Power Electronics and Electric Power, 2006 by Taylor & Francis Group, LLC.

2) Christophe P. Basso, Switch-Mode Power Supplies, Spice Simulations and Practical Designs - 2008 The McGraw-Hill Companies

3) Luis Castan^er and Santiago Silvestre: Modelling Photovoltaic Systems using PSpice 2002 John Wiley & Sons Ltd, Spain

4) PSIM® User's Guide, 2001-2014 Powersim Inc.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The design and implementation power electronic systems implies nowadays the mandatory stage of simulation. The available simulation platforms are different, being specialized on certain components of the power system, but working together of the platforms is beginning to be implemented by means of co-simulation.

The course covers the simulation of the entire power electronics system, including electrical energy transmission, renewable generators, power energy conversion, electrical energy storage, different power loads, control of power electronic convertors, data acquisition, power quality, smart metering.

Adequate competences are thus ensured for the students, compatible with today's qualification requirements, together with a modern technical and scientific preparation, which allows employment after graduation. This suits perfectly the UPB policy, regarding both structure and contents and also aptitudes and competence offered to the students

Type of activity	10.1 Evaluation		10.3 Weight in the
	criteria	methods	final mark
10.4 Lectures	 knowledge of basic theoretical notions knowledge of applying the thory to specific problems knowledge of the simulation platforms 	equallypondered,during the semester, atfixeddates;thesubjectscover	25%+25%+25%
10.5 Practical applications		The evaluation is carried out at the end of each laboratory, testing the assimilation of the studied notions.	
10.6 Minimal performation	nce standard		

Passing of a test regarding the simulation of a equipment of applied electronics: power electronics, automated systems, electrical energy management.

Date	Lecturer	Instructor for practical activities
22.11.2013	Asist.prof. PhD Teodorescu Mihail	Asist.prof. PhD Teodorescu Mihail

Date of department approvalDirector of Department,.....Prof. PhD. Sever Pasca