Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Polytechnic University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Department of Applied Electronics and Information
	Engineering
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License (engineering)
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of	of the course			Reconfigural	ble Computing	Systems	
2.2 Lecturer			s.l. dr. ing. Ioana Dogaru				
2.3 Instruct	tor for practi	cal activities		s.l. dr. ing. Ic	oana Dogaru		
2.4 Year	IV	2.5	II	2.6	Assesments	2.7	mandatory
of studies		Semester		Evaluation	tests	Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	3	3.2	2	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	42	3.5	28	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					25
			-		
Supplemental documentation (library, electronic access resources, in the field, etc)					3
Preparation for practical activities, homeworks, essays, portfolios, etc.					5
Tutoring					0
Examinations					3
Other activities				0	
3.7 Total hours of individual study	3	6			·
3.9 Total hours per semester	7	8			

3.9 Total hours per semester	78
3. 10 Number of ECTS credit points	3

4. Prerequisites (if applicable)

4.1 curricular	Digital Integrated Circuits (Logic Systems) Programmable Electronic Systems Microcontrollers
4.2 competence-based	General knowledge: digital signal processing, digital integrated circuits

5. Requisites (if applicable)

5. Requisites (in uppin	
5.1 for running the	Not applicable
course	
5.2 for running of the applications	Compulsory attendance at laboratories (under UPB's regulations).

6. Specific competences

o. specific competence	
Professional	C4: Designing and implementing of low complexity hardware and
competences	software applications, specific to applied electronics.
	C4.1 Defining concepts, principles and methods used in the following areas: computer programming, high level and specific programming languages, reconfigurable computing systems.
Transversal	CT1 Analysis of practical problems to identify elements and their
competences	consacrated solutions in order to achieve professional goals.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course familiarizes students with the most current paradigms of
of the course	hardware reconfigurable systems (circuits type: CPLD, FPGA, FPAA
	etc.), development tools and specific design (integrated development
	environments, development platforms and debugging applications) and
	practical methods for implementing a finished product in a
	reconfigurable technology.
4.2 Specific	Applications will focus on understanding through experiment and
objectives	practice specific problems of reconfigurable hardware architectures. By
	using a set of software tools and development boards with Xilinx FPGA
	circuits, will be completed through all stages of development and testing
	of applications. An important part will be assigned after completing
	works to allow familiarization with specific elements in the design of
	reconfigurable systems.

8. Content

8.1 Lectures	Teaching techniques	Remarks
Reconfigurable systems,	Teaching is based on using the	2 hours

necessity, historical trends, compared to dedicated hardware (ASICs) and microcontrollers.	projector (covering communication and demonstration teaching techniques) used oral communication methods like expository method and questioning method. Course materials are lecture notes and presentations, suggested problems. All other materials are available electronically through the course website.	
Reconfigurable system		2 hours
architecture, components		
(CLB, arithmetic units and		
memory interfaces with the		
outside world) performance		
criteria in evaluating a specific		
architecture.		
Types of reconfigurable systems (FPGA, CPLD, etc.) Examples on chips produced by Xilinx (Spartan, Virtex, etc), Altera, Cypress (PSOC). Differences and considerations regarding specific items of interest from the point of view of the application.		2 hours
Design of FPGA applications,		4 hours
specific design cycle, and		
software design tools.		
Hardware systems		
development (for example systems used in the		
laboratory).		
HDL s (hardware description		6 hours
languages); VHDL and		
Verilog basics and exercises		
aiming to describe of basic		
signal processing blocks (e.g.		
multipliers, FIR filters, 7		
segments display decoders,		
etc.).		4.1
Schematic editors, hardware		4 hours

libraries. Intellectual property	
(IP), reuse and productivity,	
designing with IP modules.	
Designing hierarchies of	
modules to define an	
application. Assigning I/O	
ports to external leads of the	
reconfigurable chip.	
Interfacing with other devices.	4 hours
Configuring and using	
external devices (memories,	
A/D converters, video output,	
USB, Ethernet, Serial etc.).	
Interfacing with host	
computers. Programming the	
reconfigurable devices. Coarse	
grain and other recently	
introduced reconfigurable	
architectures.	
FPGA-oriented	4 hours
microcontroller cores (e.g.	
PicoBlaze si MicroBlaze –	
Xilinx), and their use for	
speeding up the prototyping	
process. Associated tools	
(bootloaders, compilers, etc.).	
Systems on programmable	
chips (SOPC)	
Bibliography	

Bibliography

Ioana Dogaru, Radu Dogaru - Lecture notes.

Tutorials and application notes from XESS, Xilinx and Digilent

Website course (http://atm.neuro.pub.ro/radu_d/html/09_10/) contains references and PDF documents, the program's use in laboratory, addresses and useful information, project themes etc. Dynamically updated during the semester.

8.2 Practical applications	Teaching techniques	Remarks
Introducing a few types of	Teaching is based on using the	3 hours
FPGA development board	projector (covering	
(XESS XSA-50, minimal	communication and	
number of de interfaces,	demonstration teaching	
number of de interfaces,	techniques) used oral	

XESS XSB-300 with extended signal processing capabilities, and Basys2 Digilent development boards), connecting with host PC, demonstration of the whole design flow for a certain application (a 7 segments decoder). Assessment of competencies.	communication methods like expository method and questioning method. Students simulate, implement, test and evaluate independently the same problems using the computer, a software environment and a development board. The teaching materials are included in the tutorial platforms laboratory.	
Development tools (Xilinx ISE). Application part I: Schematic and VHDL designs. Assessment of competencies.		3 hours
Development tools (Xilinx ISE). Application part II: Hierarchical design using VHDL modules, use and reuse of IP (intelectual property) modules. Assessment of competencies		3 hours
Implementing a PicoBlaze microcontroller on the Digilent Basys2. Simple programs running on it. Constructing digital filters using the Picoblaze. Assessment of competencies		3 hours
Undoing laboratory works, discussions.		2 hours

Bibliography

Ioana Dogaru, Radu Dogaru, *Sisteme Reconfigurabile de Calcul: Lucrari Practice*, Editura Printech, februarie 2009, ISBN 978-606-521-245-9, 90 pages. (title translation: Reconfigurable systems, applications).

- The site for laboratory and course activities: http://atm.neuro.pub.ro/radu_d/html/09_10/

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Current technology requires rapid prototyping of applications, required by the market. In this regard, reconfigurable hardware technology is the optimal compromise between flexibility cost and speed execution. The industry has a demand for qualified engineers with specializations related to the design using FPGA circuit type, with a solid foundation in electronics and information technology systems so that they can maintain and develop new hardware and software applications.

The course syllabus is a concrete answer to these existing requirements, subscribed services in the European economy Electronics and Telecommunication Engineering (ETC). In the context of current technological advancement devices, fields concerned are virtually endless, from applications "consumer" technologies (digital cameras, mobile terminals "smart-phone"), healthcare (products and technologies for the analysis and medical imaging), the military (products and technology of "remote sensing" satellite imaging), the security (surveillance and biometric systems), Industrial Automation, robotics (systems human-machine interface) and others.

This provides graduates with the appropriate skills and training needs of current scientific skills and modern technical quality and competitive, enabling rapid employment after graduation is perfectly framed in policy Politehnica University of Bucharest, both in terms of content and structure and in terms of skills and international openness for students.

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the	
criteria		methods	final mark	
10.4 Lectures	Knowledge of	Two written tests with	60%	
	fundamental	equal marks during		
	theoretical concepts;	the semester, the		
	- Knowledge of the	topics cover the whole		
	application of theory	field, providing a		
	to specific problems;	synthesis of		
	- Differential analysis	comparative		
	techniques and	theoretical material		
	theoretical methods.	covering and		
		explaining the		
		exercises and		
		problems of		
		application patterns.		
		· · · ·		
10.5 Practical	Knowledge of how to	Evaluation at the end	40%	
applications	design using			
**	reconfigurable circuit	•		
	(FPGA), design flow	U		

10. Evaluation

solution by the student.						
10.6 Minimal performance standard						
Promoting tests (queries) regarding the architecture and functional principles of hardware/software structures. The student will be capable to follow all steps of the design flow in order to complete the implementation of a module on a reconfigurable computing platform (HDL or schematic description, implementing using software tools, modeling and simulation						
with performance evaluation).						

Date	Lecturer		Instructor for practical activities
	s.l. d r. ing. Ioana Do	garu	s.l. d r. ing. Ioana Dogaru
1-10-2015			
Date of departmen	it approval	Direc	ctor of Department,
20-10-2015		Prof	. Sever Pasca