COURSE DESCRIPTION

1.1 Higher education institution POLITEHNICA University of Bucharest 1.2 Faculty Faculty of Electronics, Telecommunications and Information Technology 1.3 Department Department of Applied Electronics and Information Engineering 1.4 Domain of studies Electronic Engineering, Telecommunications and Informational Technologies 1.5 Cycle of studies License (engineering) 1.6 Program of studies/Qualification Applied Electronics

1. Program identification information

2. Course identification information

2.1 Name of the course			Robotics (RO)				
2.2 Lecturer			Dr. Ing. Constantin Negrescu				
2.3 Instructor for practical activities		Dr. Ing. Constantin Negrescu					
2.4 Year of	IV	2.5	II	2.6	Verification	2.7 Course	Compulsory
studies		Semester		Evaluation		choice type	
				type			

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of		3.2	3	3.3 practical activities	1
which		course			
3.4 Total hours in the curricula, out of	56	3.5	42	3.6 practical activities	14
which		course			
Distribution of time					ore
Study according to the manual, course su	pport, t	oibliograph	y and h	and notes	34
Supplemental documentation (library, electronic access resources, in the field, etc)					5
Preparation for practical activities, homework, essays, portfolios, etc.					5
Tutoring					0
Examinations					4
Other activities					0
3.7 Total hours of individual study	48	3			
3.9 Total hours per semester	10)4			
3.10 Number of ECTS credit points	4				

4. Prerequisites (if applicable)

4.1 curricular	Mathematical Analysis and Differential Calculus
	Coputer Systems Architecture
	Automatic System Theory
4.2 competence-based	General programming knowledge

5. Requisites (if applicable)

5.1 for running the	Not applicable. Attendance according to UPB regulations
course	
5.2 for running of the	Mandatory attendance to laboratories, according to UPB regulations
applications	

6. Specific competences

Professional competences	Proiectare asistată, si realizare a sistemelor robotice complexe prin integrarea subsistemelor componente
Transversal competences	Îndeplinirea sarcinilor profesionale cu identificare exactă a obiectivelor de realizat, a unor factori potențiali de risc, a resurselor disponibile, a aspectelor economico financiare, condițiilor de finalizare a acestora, etapelor de lucru, timpului de lucru și termenelor de realizare aferente. Executarea responsabilă a unor sarcini de lucru în echipă pluridisciplinară, cu asumarea de roluri pe diferite paliere ierarhice.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Disciplina reprezinta o sinteza interdisciplinara care ii permite			
of the course	inginerului in devenire sa realizeze corelari intre domenii aparent			
	disjuncte.			
	Obiectivul general al cursului de Robotica il reprezinta studiul			
	sistemelor capabile sa subsituie sau sa complementeze activitatea umana			
	sub aspectele sale motrice, senzoriale si intelectuale. Robotica			
	inglobeaza preocupari teoretice si aplicatiile acestora legate de			
	automatizarea complexa a numeroase sectoare de activitate.			
7.2 Specific	introducere in robotica si taxonomie			
objectives	• modele matematice directe si inverse ale structurilor robotice			
	sisteme de coordonate			
	• sisteme senzoriale proprioceptive si exteroceptive in robotica			
	controlul clasic al structurilor robotice			
	controlul robotic neconventional			
	• structuri de comanda .			

8. Content

Q 1 L a sturres	Taashina tashniswaa	Damaalaa
8.1 Lectures	Teaching techniques	Remarks
1. Introduction in Robotics	The lectures are presented	3 hours
a) object of the discipline Robotics	on the table, constantly	
b) Robots, mobile robots (RM), autonomous robots,	consulting the students in	
taxonomy, specific, composing subsystems	order to verify the degree	
c) Robots generations. Programming and control	of knowledge assimilation,	
levels. Autonomy levels.	according to the University	
d) Implementation and utilization	POLITEHNICA of	
2. Mathematic models of the robotic structures	Bucharest Graduating	9 hours
a) cinematic (geometric) models	Regulation.	
b) cinematic speed models		
c) dynamic models		
d) applicability, specific mobility configurations		
3. Coordinate systems and RM navigation		9 hours
a) the navigation RM problem (formulation, local		
and global navigation)		
b) relative and absolute localization methods		
(odometry, active balize)		
c) movement planning (definition, base elements,		
configuration space, movement planning techniques)		
4. Sensorial proprioceptive and exerioceptive		6 hours
systems		
a) position and speed traductors		
b) effort sensors (compliancy types), contact, close		

zone, far zone				
c) sensorial fusion: concept, fusion types,				
multisensor system architecture				
5. Classic control of robotic structures		6 hours		
a) base principles,				
b) using models in tracking movement trajectori	es			
c) hybrid control position-force				
d) real time operating systems				
6. Unconventional Robotic control		6 hours		
a) behavioral models (avoiding obstacles, reper				
following, leader following, etc)				
b) learning techniques				
7. Humanoid robots control structures		3 hours		
a) institution robots				
b) biomimetic robots				
c) robotic networks				
Bibliography				
1. Borangiu, Th. et al., Industrial Robotics:	Theory, Modelling and Control, M	ulti-chapter		
book (Ed. Munir Merdan), Advanced Robotics Systems International, Vienna, Austria, 2006				
2. Borangiu, Th. and Fl. Ionescu, Robot Mo	odelling and Simulation, Romanian	Academy		
Press and AGIR Press, Bucharest, 2002, ISBN	973-27-0927-8 and 973-8130-64-6,	16-380		
3. Mark W. Spong, Seth Hutchinson, M. V	idyasagar, Robot Modeling and Con	ntrol, Wiley,		
2005 - 496 pagini				
4. <u>Tadej Bajd</u> (Author), Matjaz Mihelj (Au	thor), <u>Marko Munih</u> (Author), Intro	duction to		
Robotics (SpringerBriefs in Applied Sciences and	nd Technology) ISBN-13: 978-9400	0761001		
8.2 Practical applications	Teaching techniques	Remarks		

8.2 Practical applications	Teaching techniques	Remarks
1. Software and hardware presentation	The lectures are presented on	2 ore
2. V+ language instruction set	the table, constantly consulting	2 ore
3. Assembly/ Disassembly applications	the students in order to verify	2 ore
4. Artificial vision system configuration	the degree of knowledge	2 ore
5. ObjectFinder	assimilation, according to the	2 ore
6. Visual tools	University POLITEHNICA of	2 ore
	Bucharest Graduating	
7. Laboratory test	Regulation.	2 ore

Bibliography

Mark W. Spong, <u>Seth Hutchinson</u>, <u>M. Vidyasagar</u>, Robot Modeling and Control, Wiley, 2005 - 496 pagini

Microsoft Robotics Developer Studio 4 (RDS 4) - http://www.microsoft.com/robotics/#Learn

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The course represents an interdisciplinary synthesis which allows the student to make correlations between relatively disjoint domains. The general objective of the Robotics course is represented by the study of systems capable to replace or complement the human activity under his motric, sensorial and intellectual aspects. Robotics incorporates theoretical aspects and applications related to complex automation of some activity fields.

The course is structured in 7 chapters with the following objectives:

- 1. introduction in robotics and taxonomy
- 2. mathematic direct and inverse models of robotic structures
- 3. coordinate systems
- 4. proprioceptive and exerioceptive sensorial systems in robotics

- 5. classic control of robotic structures
- 6. unconventional robotic control
- 7. command structures of humanoid robots.

The laboratory has as a general objective learning the information's trained at the course by building of applicative programs using the robots in the Robotics Laboratory of the Faculty of Automatic Control and Computers, Department of Automatics and Industrial Informatics, building ED, room ED 013-014.

The study of robot manipulators, robot controllers and peripheral devices (hardware). The software architecture of a robot system. Robot – vision systems. Structured, high level robot programming languages in V+. Motion planning and conditioning, pick and place, palletizing / depalletizing, man machine communication applications. Design, editing and execution of V+ programs. The homework (project) requires solving a robotics application and conceiving a V+ robot control program.

10. Evaluation				
Type of	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight	
activity			in the final	
			mark	
10.4 Lectures	- knowledge fundamental	Two written tests checking,	70%	
	theoretical concepts;	equal weights (substitutes		
	- Knowing how to apply the	exam, given the specific		
	theory to specific problems;	degree last quarter) during the		
	- Differential analysis	semester, sustained data rate		
	techniques and theoretical	set at the beginning; Topics		
	methods.	cover the entire field, making a		
		comparative synthesis of		
		theoretical material covering		
		and explaining the exercises		
		and models of application		
1050		problems.	2004	
10.5 Practical	- Knowledge of how to design	Final laboratory test,	30%	
applications	an image analysis algorithm	comprising a theoretical and		
	for solving a given problem;	practical part. The theoretical component is checked by		
	- Knowing how transposition into code [Matlab] an	component is checked by choice test; practical		
	algorithm for image analysis;	component is assessed by		
	- Of demonstrating an image	checking the solution		
	analysis algorithm	(implementation, testing,		
	implemented.	operation) the student a		
	F · · · · · · · · · · · · · · · · · · ·	practical problem.		
10.6 Minimal performance standard				
- Solving a real problem (based on a simplified case) planning and management of movement for				
industrial robots;				
- Shaping a rea	- Shaping a real problem (based on a simplified case) planning and management of movement			
for mobile robots				

10. Evaluation

Date

Lecturer

Instructor for practical activities

01.10.2013

Dr. Ing. C-tin. Negrescu

Date of department approval

Director of Department,

Dr. Ing. C-tin. Negrescu

07.10.2013