COURSE DESCRIPTION

/11
Politehnica University of Bucharest
Faculty of Electronics, Telecommunications and
Information Technology
Department of Applied Electronics and Information
Engineering
Electronic Engineering, Telecommunications and
Informational Technologies
License (engineering)
Applied Electronics

1. Program identification information

2. Course identification information

2.1 Name of	.1 Name of the course Pr			Project 3			
2.2 Lecture	2.2 Lecturer -			-			
2.3 Instruc	tor for proje	ject activities Assoc. prof. Alexandru VASILE, Ph.D.					
2.4 Year	IV	2.5	Ι	2.6	Examination	2.7	Mandatory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	1	3.2	0	3.3	practical	1
which		course		activities		
3.4 Total hours in the curricula, out of	14	3.5	0	3.6	practical	14
which		course		activities	•	
Distribution of time						hours
Study according to the manual, course support, bibliography and hand notes						5
Supplemental documentation (library, electronic access resources, in the field, etc.)					23	
Preparation for practical activities, homework, essays, portfolios, etc.					5	
Tutoring					0	
Examinations					0	
Other activities					0	
3.7 Total hours of individual study	28					
3.9 Total hours per semester	42					
3. 10 Number of ECTS credit points	3					

4. Prerequisites (if applicable)

4.1 curricular	Electronic Devices and Circuits, Physics, Use of general purpose
	programming languages and microprocessor application-specific
	programming languages, Basics of Electrical Engineering, Data
	acquisition methods and signal processing
4.2 competence-based	General knowledge regarding the construction and operation of a system

	and of electronic circuit elements for automation systems, application of
	basic methods for acquisition and signal processing
5. Requisites (if applic	cable)
5.1 for running the	Not applicable
course	
5.2 for running of the	Compulsory attendance at project meetings (according to regulations
applications/project	governing the Masters Study in PUB).

6. Specific competences

Professional	C6. Application, in specific situations, of the basic methods of signal
competences	acquisition and signal processing and control of actuators:
	- Use of specific methods and tools for measuring physical quantities;
	- Use of software environments for signal analysis and signal processing
	and for solving control and automation problems.
Transversal	Honourable, responsible, ethical behaviour, within the law to ensure the
competences	reputation of the profession

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The project familiarizes students with the general techniques used for
of the course	collecting and analysing signals from sensors, signals containing the
	information needed to make decisions and their implementation using
	general-purpose software development environments (C, C + +) or
	dedicated environments. Real phenomena are analysed, and examples
	are given using typical industrial systems and applications. Such
	examples will be useful when working on the bachelor thesis.
4.2 Specific	The applications familiarize students with the implementation of general
objectives	methods for collecting data about physical phenomena using a dedicated
	software environment (Matlab and Simulink). In particular:
	- Familiarity with data processing techniques using iterative methods
	specific to the field of the bachelor thesis.

8. Content

8.1 Lectures	-
8.2 Practical applications	-
8.3 Project	Remarks
Meeting 1. General notions and technical parameters necessary for the design of a	2 hours
complete electronic subset. General conditions of operation for electric and electronic	
equipment. Specific mechanic and climatic conditions. Technical parameters for certain	
application fields.	
Meeting 2. The <i>technical parameters</i> of primary sensors, smart sensors. Establishing	2 hours
individual project topics, if possible in the field of the bachelor thesis.	
Meeting 3. Presentation of an example project. Parameters and conditions to be met by the	2 hours
electronic system (hardware and software). Chosen technical solutions, motivation.	
Meeting 4. Designing the power supply system for the electronic system.	2 hours
4.1. Primary energy sources. Adaptors and electronic circuits used for controlling these	
sources.	
4.2. Protection systems and methods, protection circuits for voltage regulators, adapters,	

power switching devices	
Meeting 5. Electronic circuits specific to the designed system.	2 hours
5.1. Reset systems, initialization system, communication interfaces.	
5.2. Computing systems and programming modules	
5.3. How to process data from sensors and actuators	
Meeting 6. Presentation of representative solutions by students: components, features,	2 hours
advantages and disadvantages, debate.	
Meeting 7. Presentation of individual projects and functional verification of solutions.	2 hours

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Project development has become a major concern both for the prospective graduates who must develop a bachelor project based on a functional product (designed by each of them) but also for the young engineers who will enter a mature market who experienced a fast-growing rate over the past ten years. The industry is following this trend closely. The industry has a strong demand for qualified engineers with specializations related to applicative industry and with solid fundamentals in electronics, information technology and systems, in order to be able to keep the pace of development of new hardware and software products.

The course syllabus represents a real answer to existing development and evolution requirements of European economy services in the field of Industrial Electronics (IE), military field, industrial automation, robotics (man-machine interfaces) and others.

This provides graduates with the appropriate skills required by current industry demands and with a modern scientific and technical training, both from a qualitative point of view as well as from a competitive one, enabling rapid employment after graduation. This is perfectly framed in the educational policy of Politehnica University of Bucharest, both in terms of content and structure as well as in terms of skills and international openness for students willing to work in the automotive industry.

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
			the final mark
10.5 Project	- Knowledge of the	Final verification comprising	100%
	application of theoretic	of a theoretical component and	
	notions to solve specific	a practical component. The	
	problems;	theoretical component is	
	- Knowing how to	verified by checking the	
	transpose the functioning	specific design solutions; the	
	of a system in a flow	practical component is	
	chart;	assessed by verifying the	
	- Demonstrate the	implementation process for an	
	operation of an	imposed project topic.	
	implemented system.		
	- Evaluation of the design		
	solutions		

10. Evaluation

10.6 Minimal performance standard				
- Modelling of a simple real-life analysis problem of an automated system and describing the				
processing chain needed to solve the problem;				
- Design, implementation, and functionality demonstration of a simple solution for solving a				
problem of interest for the applied electronics industry.				

Date

01.10.2015

Assoc. prof. Al. VASILE Ph.D.

Lecturer

Date of department approval

07.10.2015

Director of Department,

Prof. S. PAŞCA Ph.D.