COURSE DESCRIPTION

Politehnica University of Bucharest
Faculty of Electronics, Telecommunications and
Information Technology
Department of Applied Electronics and Information
Engineering
Electronic Engineering, Telecommunications and
Informational Technologies
License (engineering)
Applied Electronics

1. Program identification information

2. Course identification information

2.1 Name	of the cours	se		Power Electro	onics Processors			
2.2 Lecturer Prof. C			Prof. Constan	tin RADOI, Ph.	D.			
2.3 Instructor for practical activities			Prof. prof. Ad	lriana FLORESC	CU, Ph	.D.		
2.4 Year	IV	2.5	Ι	2.6	Examination	2.7	Course	Mandatory
of		Semester		Evaluation		choic	e type	subject
studies				type				ELA

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	3	3.2	2	3.3	practical	1
which		course		activities	1	
3.4 Total hours in the curricula, out of	42	3.5	28	3.6	practical	14
which		course		activities		
Distribution of time	•		•			hours
Study according to the manual, course su	pport, b	oibliograph	y and h	and notes		10
Supplemental documentation (library, electronic access resources, in the field, etc)						20
Preparation for practical activities, homework, essays, portfolios, etc.					20	
Tutoring						0
Examinations					12	
Other activities					0	
3.7 Total hours of individual study	62					
3.9 Total hours per semester	10	4				

4. Prerequisites (if applicable)

3. 10 Number of ECTS credit points

4.1 curricular	Basics of Electrical Engineering, Programmable Techniques,
	Fundamental electronics circuits, Signals and systems, Industrial
	Electronics and Informatics
4.2 competence-based	Knowledge about industrial electronics and electrical DC/DC and
	DC/AC power conversion.

4

5. Requisites (if applicable)

5.1 for running the	Not applicable
course	
5.2 for running of the	Compulsory attendance at laboratories (according to regulations
applications	governing the Masters Study in PUB).

6. Specific competences

Professional	C5 (according to ACPART-ELA list of competences)		
competences	Apply the knowledge, concepts and basic methods from: power		
	electronics, automatednsystems, electrical energy management, EMI.		
Transversal	CT3 (according to ACPART-ELA list of competences)		
competences	Adapt to the new technologies, professional and personal development,		
	by a continuous training using printed documents, dedicated software		
	and electronic resources in romanian language and, at least, in another		
	agreed international language.		

7. Course objectives (as implied by the grid of specific competences)

U	
7.1 General objective	The subject Power Electronics Processors studies using temporal and
of the course	frecvential methods DC/DC and DC/AC power systems, as well as their
	main applications in industry.
7.2 Specific	The Power Electronics Processors' laboratory is mainly focused on
objectives	learning the basic knowledge teached and its assimilation using practical
	experiments and simulations on the circuits and computers that exists in
	PEP's lab from ETTI, Department EAII, Leu building, 2 nd floor, room
	B235.

8. Content

8.1 Lectures	Teaching techniques	Remarks
1. DC/DC power conversion elements.	Teaching is based on	2h
2. DC/DC conversion: analysis of open loop PWM (pulse	the use of the	4h
width modulation) Buck, Boost, Buck-Boost and Cuk	blackboard and	
converters, galvanicaly isolated converters, converter	projector. The oral	
topologies with optimized operating parameters. Case	communication	
study: design of a DC/DC converter.	methods used are the	
3. Switching power sources, system conversion dynamics,	expository method and	2h
analysis and synthesis, time invariance in state-space,	the problem-based	
SPICE simulation. Case study: determining the transfer	method. Course	
function and the design of the feedback loop for a DC/DC	materials are: lecture	
converter. Stability region.	notes and presentations,	
4. DC/AC converters: conventional and matrix conversion	exercise book with	4h
using PWM command and control methods.	solved and proposed	
	problems (theoretical	1.01
5. Modern approaches in systems and topologies for	and solved using a	12h
optimal DC/DC and DC/AC conversion. Zero Voltage	computer). All	
Switching (ZVS) and Zero Current Switching (ZCS). Case	materials are available	
study: design of a ZVS power converter.	electronically on the	
6. Applications of DC/AC and DC/DC converters in UPS	course website.	2h

(Uninterruptable Power Supplies) used	in computer			
industry, medical electronics and other areas				
Bibliography:				
(1) C.Rădoi, A.T.Murgan, V.Lăzărescu s.a	Circuite si echipamente electronice i	ndustriale,		
Editura Tehnică, Bucuresti, 1986, (2) C.Răde	oi, V.Grigore, V.Drogoreanu - SPICE – Si	mularea si		
Analiza Circuitelor Electronice, Editura Am	co Press, Bucuresti, 1994, (3) C.Rădoi - I	Electronică		
Industrială, Lito UPB, Bucuresti, 1994, (4)				
Electronică de putere. AplicaNii, Editura M	ilitară, Bucuresti, 1991, (5) C.Rădoi, V.D	rogoreanu,		
V.Grigore, A.Florescu s.a Electronică si	informatică industrială. AplicaŃii practic	e, Editura		
Tehnică, Bucuresti, 1997, (6) M.H.Rash				
Applications, Prentice Hall, 1992, (7)	N.Mohan s.a Power Electronics: C	Converters,		
Applications and Design, John Willey&Sons	, SUA, 1995			
8.2 Practical applications	Teaching techniques	Remarks		
SPICE modelling of DC switching power	Teaching is based on the use of the	4 hours		
sources.Switching voltage regulator.	projector (covering the communication			
First quadrate operation Thyristor chopper	and demonstrative functions); the oral	4 hours		
Inverter with synthesized waveform	communication methods used are the	4 hours		
controlled by a n IBM-PC.	expository method and the problem			
Final laboratory evaluation	based method, involving all of the	2 hours		
	students. Students simulate, implement,			
	test and evaluate independently the			
	same problems through the continuous			
use of laboratory platforms and of the				
	software environment. The teaching			
	materials and laboratory platforms are			
	included in the laboratory guide book.			

Bibliography

1. C.Radoi, V.Drogoreanu, V.Grigore, A.Florescu s.a. - Electronica si informatica

industriala. Aplicatii practice (Industrial Electronics and Informatics. Practical Applications), Editura Tehnica, Bucuresti, 1997.

 C.Radoi, V.Grigore, V.Drogoreanu, SPICE – Simularea si Analiza Circuitelor Electronice (SPICE-Modelling and simulation of electronic circuits), Ed. Amco Press, Bucuresti, 1994
 EII department site: <u>www.eii.pub.ro</u>

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Power Electronics Processors discipline Industrial Electronics and Informatics domain includes commutation, command, regulation and conversion of the electrical energy from DC to DC or AC with other parameters forms, using electronic devices with their specific measurement and control circuits. Inverters (DC/AC converters) and DC/DC converters represent one of the fundamental blocks in modern electronics applications such as communications and mobile cells, media equipments, computers, medical technique and so on.

The course syllabus is adequate to this modern and actual domain of industrial electronics, that gathers and promotes the information available in the electric power conversion of energy in such a manner that the next electronics engineer should have an unlimited access to the

knowledge, concepts and basic methodologies in the field.

This provides graduates with the appropriate skills required by current industry demands on electrical power processing and with a modern scientific and technical training, both from a qualitative point of view as well as from a competitive one, enabling rapid employment after graduation. This is perfectly framed in the educational policy of Politehnica University of Bucharest, both in terms of content and structure as well as in terms of skills and international openness for students willing to work in the applied electronics industry.

10. Evaluation					
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in		
			the final mark		
10.4 Lectures	 Basic knowledge of theoretical concepts; Knowledge of the application of the theory to solve specific problems; analysis techniques and theoretical methods 	during the semester at fixed dates at the beginning of the course; the topics cover the whole field, providing a synthesis between comparative theoretical browsing of the subject and exemplification	75%		
	specific to the electronic power processors' field.	through exercises and problems of application models.			
10.5 Practical applications	 knowledge concerning the working of a given problem; Knowing how to transpose the functioning of the proposed power electronics circuits; demonstrate the operation of an implemented system. 	using a multiple choice test that contents theoretical, simulation and functioning questions from the power	25%		
	10.6 Minimal performance standard				
- design, implementation, and functionality demonstration of a simple solution for a circuit from electronic power processors' domain;					

- to be able to apply the obtained competences and abilities in the industrial power systems equiped with power electronics processors (switching power supplies, UPS, single phase and 3-phase PWM inverters etc).

Date	Lecturer,	Instructor for practical
18.10.2015	Prof. Constantin RADOI, Ph.D.	activities Prof. Adriana FLORESCU, Ph.D

Date of department approval

Director of Department,

21.10.2015