COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University Politehnica of Bucharest (PUB)
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Applied Electronics and Information Engineering
	Department
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License (engineering)
1.6 Program of studies/Qualification	Applied Electronics (English)

2. Course identification information

2.1 Name of the course				Medical Electronics and Informatics (MEI)				
2.2 Lecturer				Prof. Dr. Ing. Strungaru Rodica				
2.3 Instructor for practical activities			S.l. Dr. Ing, Țarălungă Dragoș Daniel					
2.4 Year of IV 2.5 Semester I			2.6 Evaluation	Exam	2.7 Course	Mandatory		
studies				type choice type				

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	4	3.2	2	3.3 practical	2
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	28	3.6 practical	28
which		course		activities	
Distribution of time					
Study according to the manual, course support, bibliography and hand notes					
Supplemental documentation (library, electronic access resources, in the field, etc)					
Preparation for practical activities, homework, essays, portfolios, etc.					
Tutoring					
Examinations					4
Other activities					0

3.7 Total hours of individual study	48
3.9 Total hours per semester	104
3. 10 Number of ECTS credit points	4

4. Prerequisites (if applicable)

4.1 curricular	Signals and Systems, Information Transmission Theory, Fundaments of
	Electronic Circuits
4.2 competence-based	Knowledge on signal acquisition and processing, decision and
	estimation, and also programming knowledge.

5. Requisites (if applicable)

or readments (re abbres	,
5.1 for running the	not applicable
course	
5.2 for running of the	Attending the labs (according to "regulamentului studiilor universitare
applications	de licență în UPB" – Romanian version only)

6. Specific competences

Professional	C6 Problem solving in electronics and informatics applied in medical
competences	electronic devices and systems.
Transversal	CT3 Adaptation to new technologies, professional and personal
competences	development by long-life learning using printed documentation,
	specialized software, and electronic resources both in Romanian and in
	an international language.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course introduces medical applications of electronic, artificial					
J	* *					
of the course	intelligence and computer science to the students, building the					
	mandatory common language with the medical staff. The curriculum					
	includes the electric and magnetic phenomena in the body, the basic					
	knowledge for medical applications, allowing students to understanding					
	study, design, and correctly use the electronic systems to establish					
	diagnostic tools to investigate the spontaneous and evoked activity, to					
	build intelligent prosthetic systems, and to implement rehabilitation and					
	therapy systems.					
4.2 Specific	The laboratory introduces the students in the field of biomedical signals					
objectives	acquisition and processing (i.e. electrocardiogram - ECG,					
	electromyogram - EMG, electroencephalogram - EEG, muscle					
	contraction force, photoplethysmography blood pulse, blood pressure).					

8. Content

Teaching techniques	Remarks
The teaching strategy is	1 hour
based on oral	3 hours
communication,	4 hours
multimedia facilities and	5 hours
direct, interactive	
problematization.	3 hours
C	
	4 hours
notes and presentations.	4 hours
7	1 hour
7	1 hour
]	2 hours
	The teaching strategy is based on oral communication, multimedia facilities and direct, interactive

Bibliography

- Course notes R. Strungaru
- http://www.bem.fi/book/ Bioelectromagnetism J. Malmivuo, R. Plonsey
- http://www.evicab.eu/ European Virtual Campus for Biomedical Engineering
- Advances in Biomedical Engineering P. Verdonck (ed), Elsevier, 2009.
- Introduction to Biomedical Engineering 3rd Edition J. D. Enderle, J. D. Bronzino, Elsevier, 2012.

8.2 Practical applications	Teaching techniques	Remarks
Electrosecurity. Acquisition and processing	- oral presentation of the theoretical	4 hours

system for biomedical applications	part of the laboratory;	
(BIOPAC)	- individual studying of the laboratory	
Acquisition and processing of the	works contained in the Laboratory	4 hours
electrocardiogram (ECG)	Guide, available online.	
Acquisition and processing of the	- the students configure the hardware	4 hours
electromyogram (EMG)	and software for the acquisition system	
Acquisition and processing of the	- the students measure the parameters	4 hours
electroencephalogram (ECG)	specified in the laboratory works.	
Acquisition and processing of the blood	- the students process the recorded	4 hours
pressure.	signals and complete the lab sheet.	
Acquisition and processing of the	- the homework consists in filling in the	4 hours
photoplethysmographic pulse, correlated	laboratory sheet, reaching conclusions	
with the ECG signal.	on the results and answering the	
Practical application evaluation	mentioned questions.	4 hours

Bibliography

- https://elmed.pub.ro/"student secured access (the login data are offered in the first lab session) here are the laboratory works and the software required by the BIOPAC acquisition system available in the lab.
- Instrumentație biomedicală. Măsurarea și analiza biopotențialelor, Tarălungă Dragoș, Ed. Matrix, București, 2013

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Many of the problems confronting medical staff today are very important for the engineers as they involve basic aspects regarding the analysis of devices and systems, their design, and their use. The problems varies highly, from very simple to complex ones, looking for relatively small and handy devices, good recording electrodes and transducers able to monitor the activity of specific physiological processes, and for developing large-scale medical systems, e.g. (national) hospital information systems.

The curriculum meets exactly the current developing and evolving requirements derived from the medical electronics and informatics services required by the world economy. Considering the current technological progress, the electronics and medical applications require intense medical informatics advancement.

The graduate students get the appropriate skills according to the current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and structure, and the skills and international openness it offers to students.

10. Evaluation

Type of activity	10.1	Evaluation	10.2	Evaluation	on	10.3	Weight	in	the
	criteria		metho	ods		final	mark		
10.4 Lectures	- the	knowledge of	Oral	examination	in	60			
	basic	theoretical	the ex	ams period					
	concep	ts;							
	- the ki	nowledge of the							

	application of theory to specific problems; - comparative analysis of the theoretical techniques and methods.		
10.5 Practical applications	- the knowledge of acquiring various types of biomedical signals - the data processing	Final test comprising a theoretical and a practical part. The theoretical knowledge is evaluated by a multiple choice test, and the practical one by setting up the hardware and software of the Biopac acquisition system to measure a particular type of biosignal.	40

10.6 Minimal performance standard

- understanding the theoretical and practical problems, as evidenced by obtaining at least 50% of each score.

Date 1.10.2015

.....

Lecturer Prof.Dr.Ing. Rodica Strungaru Instructor for practical activities Ş.L: Dr. Ing. Dragoş Ţarălungă

Date of department approval

Director of Department, Prof.Dr.Ing, Sever Paşca