University POLITEHNICA of Bucharest

Faculty of Electronics, Telecommunications, and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University POLITEHNICA of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information Technology
1.3 Department	Applied Electronics and Information Engineering
1.4 Domain of studies	Electronics, Telecommunications and Informational Technologies
1.5 Cycle of studies	First cycle (BSc degree in engineering)
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of	the course			Medical Imaging	g		
2.2 Lecturer Prof. Eng. Paşca			Sever, PhD				
2.3 Instructor for practical activities		Lecturer Eng. Sultana Alina, PhD					
2.4 Year of	IV	2.5	Ι	2.6 Evaluation	Exam	2.7 Course	Mandatory
studies		Semester		type		choice type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	4	3.2	2	3.3 practical activities	2
		course			
3.4 Total hours in the curricula, out of which	56	3.5	28	3.6 practical activities	28
		course		-	
Distribution of time					hours
Study according to the manual, course support, b	oibliograp	hy and hand	notes		32
Supplemental documentation (library, electronic access resources, in the field, etc)					6
Preparation for practical activities, homeworks, essays, portfolios, etc.					7
Tutoring					0
Examinations					3
Other activities				0	
3.7 Total hours of individual study	48	3			
3.9 Total hours per semester	10)4			
3. 10 Number of ECTS credit points	4				

4. Prerequisites (if applicable)

4.1 curricular	-
4.2 competence-based	General knowledge of physics, computer operation and programming (Matlab
	simulation environment and LabVIEW programming environment knowledge)

5. Requisites (if applicable)

5.1 for running the course	-
5.2 for running of the applications	Compulsory attendance at laboratories (under bachelor studies regulation in UPB)

6. Specific competences

Professional competences C4 – Design and use hardware and software app	plications of low complexity, specific to
--	---

	applied electronics
	C5 - Applying the knowledge, the concepts and the basic methods regarding the power
	electronics, automatic systems, energy management, electromagnetic compatibility
Transversal	CT1 - The methodical analysis of the daily issues, identifying the problems for which
competences	well-known solutions are already available, thus accomplishing the professional tasks
	CT3 Adaptation to new technologies, professional and personal development by long-
	life learning using printed documentation, specialized software, and electronic
	resources both in Romanian and in an international language.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective of	Presenting the physics principles used in medical imaging techniques, the obtaining			
the course	and reconstruction of medical images and the working principles of the main imagin			
	systems.			
	Presenting some of the processing and specific standards associated with digital			
	medical imagining. The students will familiarize with some of the specialized			
	visualization, processing and analysis software tools used for medical images. Mini-			
	projects concerning small software applications will be made.			
4.2 Specific objectives	Developing the ability to apply general knowledge on the basic physics principles and			
	methods used in obtaining medical images on operating, maintenance and developing			
	the medical imagining systems, as well as solving actual problems related to			
	processing and manipulating the digital medical images.			

8. Content

o. Content		
8.1 Lectures	Teaching techniques	Remarks
The physics foundation of medical	The course presentation is based on	4 hours
imaging, Medical Imaging Methods,	multimedia facilities (interactive	
Image quality	blackboard, PowerPoint	
Transmission Imaging	presentations, and computer based	4 hours
(Radiography, Computer	examples) and includes open talks	
Tomography)	and interactive presentations.	
Reflexion Imaging (Echography,	The materials for courses are	4 hours
Optical Coherence Tomography)	available in electronic format	
Emission Imaging (Scintigraphy,		4 hours
Single Photon Emission Computed		
Tomography, Positron Emission		
Tomography, Thermography)		
Absorption-emission Imaging (NMR		6 hours
Tomography)		
Other Imaging Techniques (Optical		2 hours
Methods, Electrical Impedance		
Tomography)		
Image Reconstruction Algorithms in		4 hours
Projection Tomography		
Dibliggraphy		

Bibliography

- A. Macovski, "Medical Imagine Systems", Ed. Prentince-Hall, Englewood Cliffs, New Jersey.

- S. Webb, "The Phisics of Medical Imaging", Ed. Adam Hilger, Bristol and Philadelphia.

- J. Ederle, S. Blanchard, J. Bronzino, "Introduction to Biomedical Engineering", Ed. Academic Press, 2000.

- A. Kak, M. Stanlez, "Principles of Computerized Tomographic Imaging", Ed. IEEE Press, 1988.

- M. Morega, "Introducere in imagistica medicală", Ed. Matrix Rom, București, 2002.

- J.L. Prince, J.M.Links, "Medical Imaging Signals and Systems", Ed. Prentice Hall, New Jersey 07458, 2006.

- P. Suetens, "Fundamentals of Medical Imaging", Ed. Cambridge University Press, Second Edition, ISBN-13 978-0-511-59640-7, 2009.

8.2 Practical applications	Teaching techniques	Remarks
II	8 1	

Introductory elements in medical image analysis applied on ImageJ platform	The presentation is based on multimedia facilities (interactive blackboard, PowerPoint	4 hours
Medical image processing using Matlab	presentations, and computer based examples) and includes open talks	4 hours
Implementing mammography image processing algorithms	and interactive presentations. The practical activities require both	4 hours
Medical image analysis and processing using LabVIEW	individual and team work and include small projects and	4 hours
DICOM standard, specifications and applications	homework. The materials for applications are	4 hours
DICOM Viewers	available in electronic format.	4 hours
Using specialized software for 3D medical images reconstruction using Slicer3D		4 hours

Bibliography

- E. Berry, "A practical Approach to Medical Image Processing", Taylor & Francis, 2007.

- J.L. Prince, J.M.Links, "Medical Imaging Signals and Systems", Ed. Prentice Hall, New Jersey 07458, 2006.

- A. Sultana, S. Pasca, "Imagistica medicala: Indrumar de laborator", Editura POLITEHNICA PRESS, București,

2013, ISBN 978-606-515-478-0.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Medical imaging has become a mature market with high growth. The medicine has included medical imaging techniques in basic medical investigations packets, the industry closely following this trend. The industry has a strong demand for qualified engineers with specializations related to medical imaging, with a solid foundation in electronics and information technology systems, such that it can be able to keep the pace of development of new hardware and software.

The course curricula answer these developments and evolution trends, subscribed to the general framework of a European economy of services in the area of Electronics, Telecommunications and Informational Technologies. The current technological advance of electronic devices enables unlimited application opportunities, ranging from medical electronics (medical diagnostic and therapy based or aided on imaging investigation, product and technologies for acquisition, analyse, and processing medical images, new method for medical imaging investigation), military (products and technologies for non-destructive product quality test), security (surveiance systems), industrial (non-destructive products investigation systems), and many others.

This provides graduates with the appropriate skills and training needs of current qualifications, and a modern and competitive scientific and technical instruction, enabling them a quick employment after graduation, being perfectly framed within the Bucharest Polytechnic University policy, both in terms of content and structure, and in terms of skills and international openness offered to students.

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final
			mark
10.4 Lectures	- knowledge of the	One written exam during	50%
	fundamental theoretical	the session; the subjects	
	notions;	cover the entire course	
	- knowledge of the solving	material, being a synthesis	
	of specific problems;	between the comparative	
	- differential analysis of	theoretical knowledge and	
	the theoretical methods.	application of theoretical	
		methods and techniques to	
		solving practical problems.	
10.5 Practical applications	- knowledge of the general	The final lab exam	50%

10. Evaluation

analy simp - the comp findi solut impl prob - Ima Matl	gn of an image ysis algorithm for a ble, given problem; coretical prehension and ing anticipation tion for a practical lementation of a given blem; age analysis algorithm lab coding; oving the operation of	consists of a practical examination, during which the student must solve (implement, test, proof of functioning) a practical image analysis problem.	
-	ven image analysis prithm.		
10.6 Minimal performance standard			
 modeling a simple real image analysis problem and designing the processing flow used to solve the problem; basic theoretical information comprehension and their application for solving practical problems; design, implementation, and proving of the operation of a simple solution to a given medical image analysis problem and the region of interest object description. 			

Date

Lecturer

Instructor for practical activities

01.10.2013

Prof. Dr. Ing. Sever Paşca Ş.l. Dr. Ing. Alina Sultana

Date of department approval

Director of Department,

07.10.2013

Prof. Dr. Ing. Sever Paşca