Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION COMPUTER ARCHITECTURE

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information
	Technology
1.3 Department	Applied Electronics and Information Technology
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License (engineering)
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of	of the course			Computer A	Architectu	re	
2.2 Lecture	er			Assoc. Prof	. Radu Rà	ídescu	
2.3 Instruct	tor for practi	cal activities		Assoc. Prof	. Radu Rà	ídescu	
2.4 Year	IV	2.5	Ι	2.6	Exam	2.7 Course	Compuls
of studies		Semester		Evaluation		choice type	ory
				type			

3. Total estimated time (hours per semester for academic activities)

				/	
3.1 Number of hours per week, out of		3.2	2	3.3 practical	2
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	28	3.6 practical	28
which		course		activities	
Distribution of time					hours
Study according to the manual, course su	ipport,	bibliograpl	ny and	hand notes	18
Supplemental documentation (library, electronic access resources, in the field, etc)					14
Preparation for practical activities, homework, essays, portfolios, etc.					7
Tutoring					0
Examinations					3
Other activities					0
3.7 Total hours of individual study 36					
3.9 Total hours per semester 78					
3. 10 Number of ECTS credit points	3				

4. Prerequisites (if applicable)

4.1 curricular	Microprocessor Architecture
	Digital Integrated Circuits

	Boolean Algebra			
4.2 competence-based	The main purpose of this subject is to develop the student abilities to			
	apply the general knowledge of computer architecture in specific			
	projects. The skill to evaluate a certain type of computer based on			
	performance criteria and to establish the functioning conditions for a			
	computer system in a given situation. Acquiring the necessary skills for			
	computer systems analysis and design (principles, structure, and			
	functioning) in order to satisfy specific requirements.			

5. Requisites (if applicable)

or industrial (in approx	
5.1 for running the	Projector, screen
course	
5.2 for running of the	Mandatory attending the laboratory classes (according to the license
applications	graduation regulation of the PUB)

6. Specific competences

Professional	Description of the operation of a computer system, the principles of
competences	architecture of microcontrollers and general purpose microprocessors, the
-	general principles of structured programming (C3.1); definition of
	concepts, principles and methods used in the fields of computer
	programming, high-level languages and specific CAD techniques for
	achieving electronic modules, microcontrollers, computer systems
	architecture, programmable electronics, graphics, hardware reconfigurable
	architectures (C4.1); the principles and methods underlying the
	manufacture, tuning, testing and servicing of appliances and equipment in
	the fields of aaplied electronics (C6.1); the use of general-purpose
	programming languages and application-specific microcontrollers and
	microprocessors; explanation of the operation of control systems (C3.2);
	explaining and interpreting the specific hardware and software structures
	requirements in the fields of computer programming, high-level languages
	and specific CAD techniques for achieving electronic modules,
	microcontrollers, computer systems architecture, programmable
	electronics, graphics, hardware reconfigurable architectures (C4.2); solving
	practical problems that include elements of specific data structures and
	algorithms, programming and use of microprocessors or microcontrollers
	(C3.3); using the appropriate performance criteria for the evaluation,
	including simulation, hardware and software dedicated systems, services or
	activities that use microcontrollers or computers of low to medium
	complexity (C4.4), achieving projects involving hardware (processors) and
F 1	software (programming) (C3.5).
Transversal	Methodical analysis of the problems encountered in the professional
competences	activity, identifying items for which there are dedicated solutions, thus
	ensuring professional tasks (CTT); adaptation to new technologies,
	professional and personal development through training using printed
	documentation sources, specialized software and electronic resources in
	Komanian and, at least, in a foreign language (CT3).

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Several widely used typical computer architecture presentations. Study		
of the course	of the computer structure: central processing unit, memory, input-output		
	devices, peripherals connection. Presentation of computer components		
	and interaction between them at the physical level (processor, IRQ,		
	buses), at the micro-programmed level (horizontal, vertical, mixed,		
	nano-programming), and at the operating system level (virtual memory		
	management). Analysis, design, exploiting, examples, and applications.		
4.2 Specific	The detailed study of components at the physical level, micro-		
objectives	programmed level, and operating system level. Computer system		
	configuration by establishing the main functioning parameters.		
	Computer components design and dimension. Applying algorithms for		
	managing the computer functioning at all its levels.		

8. Content

8.1 Lectures	Teaching techniques	Remarks
Computer multilevel structure, brief history of machine	The teaching	6 hours
evolution, serial and parallel computer structure, computers	method is based on	
classification and architecture examples. The fifth generation	projector use (with	
of computing machines. The paradigm shift in system	communication and	
architectures: invisible and low-power computers:	demonstration	
miniaturized, flexible, extensible, programmable systems.	function); oral	
Hardware and software codesign.	communication	
Computer structure: CPU, memory, I/O devices, peripherals	models: frontal	6 hours
connection to the system. Input-output interfaces: serial,	exposition and	
parallel and wireless. Parallel computer architectures and	problems. Lectures	
multiprocessors types, parallelism levels for computing	support: notes and	
systems. Examples of processors and chips in central	course	
processing units for embedded systems and systems-on-a-	presentation,	
chip. Intel, AMD, Sun, AVR, ARM family architectures.	exercises,	
Examples and case studies.	problems,	
Physical level: microprocessors, IRQ, buses, bus arbitration,	simulations and	6 hours
types, families and examples of buses. Communication	applications	
protocols currently used and their implementations.	(theoretical and	
Performance evaluation, architectural analysis and design	computer-based).	
principles. Examples and case studies.	Electronic support:	
Micro-programming level: examples of architectures in	course site, Easy-	4 hours
horizontal, vertical and hybrid format, micro-instructions,	Learning and	
micro-commands, nano-programming. Examples and case	Moodle platforms.	
studies.		
Operating system level: paging, page replacement policy,		4 hours
segmentation, segment replacement algorithms, memory		
management solutions. Examples and case studies.		
Computer applications in specific domains		2 hours

Bibliography:

- 1. Radu Rădescu, Arhitectura sistemelor de calcul (Computer Architecture), Politehnica Press, Bucharest, 2009.
- 2. Radu Rădescu, *Arhitectura sistemelor de calcul lucrări practice* (Computer Architecture Practical Works), 3rd Edition, Politehnica Press, Bucharest, 2009.
- 3. Andrew Tanenbaum, Todd Austin *Structured Computer Organization, 6th edition*, Pearson Education Inc., Prentice Hall, 2013.
- 4. Andrew Tanenbaum, *Organizarea structurată a calculatoarelor*, ediția a IV-a, Editura Byblos, București, 2004.

8.2 Practical applications	Teaching techniques	Remarks
Benchmark methods for microprocessors.	Laboratory works are based	2 hours
Benchmark methods for buses.	on an original computer	
Hardware & software mechanisms of parallel	application system,	2 hours
processing.	integrated in the Easy-	
Multithreading and CPU performance evaluation.	Learning e-learning online	
RAM memory: SRAM vs. DRAM.	platform. Oral	2 hours
Cache memory.	communication model:	
I/O transactions management.	problems. The students	2 hours
Study of serial transmission.	independently simulate,	
Synchronous and asynchronous buses.	implement, test and evaluate	2 hours
Bus arbitration mechanisms.	the same applications based	
Horizontal and vertical micro-programming, nano-	on the continuous use of	2 hours
programming, virtual memory management:	computer and software	
pagination and segmentation.	media. The laboratory	
Laboratory assessment	documentation is available	2 hours
	on the printed version of	
	practical works guide and	
	on the Easy-Learning e-	
	learning online platform.	

Bibliography:

- 1. Radu Rădescu, *Arhitectura sistemelor de calcul*, ediția a IV-a, Editura Politehnica Press, București, 2009.
- 2. Radu Rădescu, *Arhitectura sistemelor de calcul lucrări practice*, ediția a III-a, Editura Politehnica Press, București, 2009.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the program domain

The present course tries to set the limits of computer structure and functioning, emphasizing principles, design, operating and relational aspects involving the modern computer components. It draws the landmarks of a fundamental domain in computer engineering and sets the connection between software&hardware and technology, being addressed to future specialists and designers. The course syllabus directly answers the present requirements of developing and evolution, assumed by the European economy of Applied Electronics services in the domain of Electronic Engineering and Telecommunications. Taking into account the current progress of electronic devices, the aimed activity domains are very numerous, practical applications having a particularly diversity.

This way, the graduating student are provided with adequate skills for the needs in present specializations and with modern, high-quality and competitive scientific and technical background, that can allow them a quick integration after graduation. This course in very well integrated in the PUB policy, with regard to the structure and content, as well as to the skills and labor market offered to the students.

To. Evaluation			10.0 111.1.1
Type of	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
activity			the final mark
10.4	- assimilation of basic theoretical	Final exam, four equally-	70%
Lectures	concepts;	weighted written tests at the	
	- assimilation of application of	end of fundamental chapters	
	theory into specific application	and a homework due at the	
	areas;	term end; subjects cover the	
	- assimilation of analysis,	complete syllabus, supposing	
	evaluation and design methods	a synthesis of compared	
	for computer components	theoretical aspects and	
		exercises-based applications	
		and analysis, evaluation and	
		design assignments.	
10.5	- assimilation of computer	Final laboratory test,	30%
Practical	analysis, performance evaluation	involving theoretical and	
applications	and design methods, in every	practical components. The	
	involved aspect;	theoretical component is	
	- assimilation of technology and	evaluated by means of	
	algorithm types used in	questions and exercises, and	
	computer design and	the practical component is	
	functioning;	evaluated by means of	
	- assimilation of operating	solving a practical application	
	modes for practical schemes and	(analysis, design,	
	of connections between blocks at	implementation, functioning	
	different levels: technological,	and testing).	
	physical, micro-programmed		
	and operating systems.		
10.6 Minimal performance standard			
- modeling simple or medium-complexity real problems, involving the overall analysis of			
computer systems and selecting the necessary design methodology in order to solve requested			

10 Evaluation

ry design memodoi ıg **y**gy specifications;

- design, evaluation and operational testing of a specialized hardware and software solution for a requested architectural problem and determining the performances of the resulting system.

Date,	Lecturer,	Instructor for practical activities,
19.10.2015	Assoc. Prof. Radu Rădescu	Assoc. Prof. Radu Rădescu
Date of department approval	,	Director of Department,

19.10.2015

Prof. Sever Paşca