Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University POLITEHNICA of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information
	Technology
1.3 Department	Telecommunications
1.4 Domain of studies	Electrical Engineering and Telecommunications
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Technologies and Systems for Telecommunications

2. Course identification information

2.1 Name	.1 Name of the course			Analog and Digital Communications			
2.2 Lecturer			Prof. PhD. Eng. Simona Halunga,				
2.3 Instructor for practical activities			Prof. PhD. Eng. Simona Halunga.				
2.4 Year	III	2.5	6	2.6	Verification	2.7	Compulsory
of		Semester		Evaluation		Course	
studies				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

				/	
3.1 Number of hours per week, out of	4	3.2	3	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	42	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course sup	oport, b	ibliograph	y and h	and notes	10
Supplemental documentation (library, electronic access resources, in the field, etc)				2	
Preparation for practical activities, homew	vork, es	says, porti	folios, e	etc.	5
Tutoring					0
Examinations					5
Other activities					0
3.7 Total hours of individual study	22				•
3.9 Total hours per semester	78				

4. Prerequisites (if applicable)

3. 10 Number of ECTS credit points

4.1 curricular	Signals and Systems
	Analysis and Synthesis of Circuits
4.2 competence-based	general knowledge regarding signals, systems, modulation, analysis of discrete systems.

3

5. Requisites (if applicable)

of negationes (in appin	
5.1 for running the	Not applicable
course	
5.2 for running of the	Compulsory attendance at laboratories (in accordance with the
applications	regulations for license university studies in UPB)

6. Specific competences

Professional	C4 Design, implementation and operation of data, voice, video and
competences	multimedia services, based on understanding and applying the
	fundamentals of communications and information transmission
	C5 Selection, installation and operation of fixed and mobile
	telecommunication equipment, and the design of the site ensuring a
	common telecommunications network.
Transversal	-
competences	

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The students have to become familiar with the main aspects regarding
of the course	analogue communication techniques (modulation, demodulation, SNR)
	and also the steps performed to convert an analogue signal into a digital
	one. A number of specific time / frequency analysis techniques are
	presented, as well as specific methods to modulate / demodulate for each
	specific type of modulation. Regarding performance evaluation, For
	each type of modulation is determined the SNR.
	According G1 – competencies C4/ C5
4.2 Specific	The main fundamental aspects concerning data analogue
objectives	communications are presented. The main amplitude / frequency / phase
	modulation techniques are introduced and analyzed with respect to their
	shape in time, frequency spectra, bandwidth and power requirements, as
	well as modulation and demodulation techniques used, and SNR. The
	steps performed to convert an analogue signal into a digital one,
	represented on a finite number of bits are presented, as well as a number
	of baseband techniques used to transmit digital data.
	According G1 – competencies C2.1 / C4.1./ C5.1. / C4.2 / C6.2

8. Content

8.1 Lectures	Teaching techniques	Remarks
Analogue Communication systems –	Teaching is performed using	1 hours
generalities. Definitions, main concepts, brief	an overhead projector, that	
history. Communication chain, signals, signal-to-	covers the communication	
noise ratio. Classification.	and demonstration activities.	
Linear modulated signals. General expression	The oral communication	2 hours
for linear modulated (LM) signals. Amplitude	methods are he expository one	
Modulation (AM). Double Sideband Modulation	and the problem solving	
(DSB). Single Sideband Modulation (SSB).	method. All the class notes,	
Vestiginal Sideband Modulation (VSB)	solved problems, proposed	

Generation of LM Signals. Implementation of	problems, computer problems	5 hours
the product operator. Generation of AM and DSB	or other helpful materials are	
signals. USB signals generation.	available on the course site.	
Demodulation of LM signals. Sinchronous		4 hours
demodulation using and adder and a product		
operator. Phase and frequency error effects on		
AM, DSB and SSB signals demodulation. LM		
demodulators using product operator and low-pass		
filter. Mean value rectifiers. Peak detectors.		
Signal-to-Noise Ratio (SNR) at LM signals.		4 hours
SNR determination for AM signals. SNR		
determination for DSB signals. SNR		
determination for SSB signals. Performance		
comparison.		
Exponential modulated signals. Frequency		2 hours
modulated (FM) signals. Phase modulated (PM)		
signals.		
FM signals generation. Integro-differential		4 hours
equation of generation for FM signals and		
implementation. Quasi-sationarity conditions.		
Implementation of FM modulators in quasi-		
sationarity conditions. The square wave FM		
generator. The Armstrong method.		
FM signals demodulation. Principles of FM		4 hours
demodulators. Direct demodulation. Clarke-Hess		
demodulator. Demodulation using circuits that		
approximates the derivation in frequency domain.		
Demodulation using circuits that approximates the		
derivation using delay circuits.		
Signal-to-Noise Ratio (SNR) at FM signals.		4 hours
SNR for FM signals. Caption phenomenon.		
Emphasizing and deemphasizing of FM signals.		
Transforming analogue signals into digital		4 hours
ones. Analogue signal sampling in the baseband.		
Analogue pass-band signals sampling. Quantizing		
sampled signals. Uniform / non-uniform		
quantization. Non-uniform quantization rules.		
Digital baseband signals modulation. Pulse		4 hours
Coded Modulation (PCM). Pulse Amplitude		
Modulation (PAM). Pulse Pozition Modulation		
(PPM). Differential PCM. Delta PCM. Adaptive		
Delta PCM. Line codes.		
PLL Circuits – Principles. Linear model for PLL.		4 hours
The transient response of synchronized PLLs. PLL		
analysis in the presence of noise. FM Demodulator		
implemented with PLLs		

Bibliography

 Constantin, I. Marghescu, "Transmisiuni analogice şi digitale", Ed. Tehnică, Bucureşti, 1995.
 V. Croitoru (coordonator), "Comunicații digitale. Teorie şi experiment", Ediția a II –a, Ed. Printech, Bucureşti, 2003.

3) H.Taub, Schilling, "Principles of communication systems" 3rd edition, Mc Graw Hill, 2007
4) R. E. Ziemer, W. H. Tranter, "Principles of Communications" 2nd edition, John Wiley & Sons, 2007.6) Class notes available online.

8.2 Practical applications	Teaching techniques	Remarks
LM signals. Examples.	Teaching is based on problem	2 hours
LM signal generation. Product operators	expository by the teaching	2 hours
implementation. SSB signals generation.	assistant and their solving by all	
LM signals demodulation. Specific	students with his / her	2 hours
implementations for DSB, SSB.	explanations and help. The	
Demodulators for AM signals. Rectifiers. Peak	students will solve the problem on	2 hours
demodulators.	their own, and confront their	
FM signals generation	results with the ones provided by	2 hours
FM signals demodulation	the teaching assistant. All the	2 hours
Sampling, quantizing and coding.	teaching materials are available	2 hours
	on the course site. Parts of the	
	exetrcises may be checked by	
	simulating them in Matlab /	
	Simlink environment.	

Bibliography

1) I. Constantin, S. Halunga, I. Marcu, "Transmisiuni analogice și digitale – culegere de probleme", editura Electronica 2000, 2010

2) S. Halunga, O. Fratu "Simularea sistemelor de transmisiune analogice și digitale folosind mediul Matlab/Simulink "(Simulation of analog and digital communication systems using Matlab)- Editura Matrix Rom, București, 2004

3) V. Croitoru (coordonator), "Comunicații digitale. Teorie și experiment", Ediția a II –a, Ed. Printech, București, 2003

4) Grahame Smillie and Graham Smillie, Analogue and Digital Communication Techniques 1st Edition, Butterworth-Heinemann; 1 edition (April 2, 1999)

5) Jerry D. Gibson, Principles of Digital and Analogue Communications, Macmillan USA; First Edition edition (March 1989)

4) Class notes in Electronic format

5) Solved / Proposed problems in electronic format.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The course curriculum answers the trends regarding the developments and evolution requirements, demanded by the general framework of the European economy of services in the IC&T domain.

This provides graduates with the appropriate skills and training requirements according to current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and

structure, and the skills and international openness it offers to students.

10. Evaluation 10.1 Evaluation criteria 10.2 Evaluation methods Type 10.3 Weight in of the final mark activity 10.4 Lectures - knowledge of the basic 70% theoretical knowledge; - knowledge to apply the theoretical aspects to solve specific problems; - differential analysis and comparison of different theoretical methods. 10.5 Practical 30% - individual / independent applications solving of the proposed problems, verified with a control paper and а homework assignment; - understanding fundamental concepts in data communication systems. 10.6 Minimal performance standard - capacity to solve standard problems connected to the material presented in class and seminars; - capacity to model an end to end communication chain and to demonstrate its functionality.

Date

Lecturer

Instructor for practical activities

20.09.2017

Prof. PhD. Eng Simona Halunga

Prof. PhD. Eng. Simona Halunga

feling

Date of department approval

Director of Department,

Assoc. Prof. PhD. Eng. Eduard POPOVICI

25.09.2017