Politehnica University of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University POLITEHNICA of Bucharest		
1.2 Faculty	Electronics, Telecommunications and Information		
	Technology		
1.3 Department	Telecommunications		
1.4 Domain of studies	Electronic Engineering, Telecommunications and		
	Informational Technologies		
1.5 Cycle of studies	License		
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications		
	(TSTeng)		

2. Course identification information

2.1 Name of the course			Project 2				
2.2 Lecturer			-				
2.3 Instructor for practical activities		Assoc. Prof. PhD. Eng Mihai Stanciu					
2.4 Year	III	2.5	5	2.6	Verification	2.7	Mandatory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	1	3.2	0	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	14	3.5	0	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					
Supplemental documentation (library, electronic access resources, in the field, etc)					
Preparation for practical activities, homework, essays, portfolios, etc.					
Tutoring					
Examinations					4
Other activities					0
3.7 Total hours of individual study	38	3			1
3 9 Total hours per semester	50)			

3.9 Total hours per semester	52
3. 10 Number of ECTS credit points	2

4. Prerequisites (if applicable)

4.1 curricular	Microprocessor Architectures, Data Structure and Algorithms
4.2 competence-based	Knowledge microprocessors and assembler and or C language

5. Requisites (if applicable)

5.1 for running the	Not the case
course	
5.2 for running of the	Mandatory presence in laboratory (accordingly with the university
applications	internal rules)

6. Specific competences

Professional	Create the ability to apply general knowledge on microcomputers
competences	architectures. Ability to evaluate the effectiveness of implementation of
-	a microcomputer application (hardware and software) using
	performance criteria being analyzed (C1, C2, C3 competences).
Transversal	Honorable behavior, responsible, ethical, within the law to ensure the
competences	reputation of the profession

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Create the ability to design a microcontroller system (both hardware and
of the course	software). Learn how to use specific tools for system development.
4.2 Specific	Specific application, in which both the software and hardware
objectives	components is involved, will be made.

8. Content

8.2 Project	Teaching techniques	Remarks
1. Overview of the generic application and	Oral communication method	4 hours
tools (CodeVision AVR), assembly of an	used is problem-method.	
AVR-based processor board	Students simulate, implement,	
2. The presentation of specific projects	test and evaluate independently	2 hours
3. Hardware and software design for the	the same problems with	4 hours
specific project	continued use of the computer	
4. Hardware – software integration	and software environment.	2 hours
Final Evaluation	The teaching materials are	2 hours
	included in the tutorial lab	2 hours
	platforms laboratory.	
Bibliography		

- Sorin Zoican, "Microprocesoare si microcontrolere. Aplicatii", Editura Politehnica Press,

Bucuresti, 2011

- ham.elcom.pub.ro/proiect2

9. Bridging the project content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The industry has a demand for qualified engineers with specializations related to microcontroller applications with a solid foundation in electronics and information technology systems so that they can maintain the rate of development of new hardware and software.

The project syllabus answers concretely to these existing development and evolving requirements subscribed to the European economy services in Electronics Engineering. In the context of current technological advancement devices, fields concerned are virtually endless, from the telecommunications, military, the security (surveillance systems), Industrial Automation (product inspection systems), robotics (human interface systems machine) and others.

This provides graduates with the appropriate competences and training needs of current modern scientific and technical quality and competitive skills, enabling rapid employment after graduation. This is perfectly framed in policy Politehnica University of Bucharest, both in terms of content and structure and in terms of skills and international openness for students.

10. Evaluation

Type of activity	10.1 H	Evaluation	10.2	Evaluation	10.3	Weight	in	the
	criteria		methods		final	mark		
10.4 Practical	Common part:		Oral examination		10%			
applications	successful as	ssembly						
	of a working	g board.						
	Use of the				10%			
	oscilloscope	in order						
	to view the							
	waveforms associated							
	with the boar	rd's inner						
	working							
	Design and				35%			
	implementat							
	the students)							
	specific part of the							
	project: hardware and							
	software, in teams of							
	2 students (different							
	projects per team)							
	Documenting	-			20%			
	project in ele							
	form (web pa	age)						
	Answer to or				25%			
	questions reg	garding						
	the project							
	(individual, j	per						
	student)							
	Total				100%)		
10.5. Minimal perform	ance standard	: 50% of tot	al					

Date

Lecturer

20.09.2017

Instructor for practical activities

Assoc. Prof. PhD. Eng. Mihai Stanciu

Janai

Date of department approval

01.10.2017

Director of Department,

Assoc. Prof. PhD. Eng. Eduard Popovici