COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	POLITEHNICA University of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information
	Technology
1.3 Department	Telecommunications
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications
	(TSTeng)

2. Course identification information

2.1 Name of the courseDigital Signal Processing							
2.2 Lecturer			Assoc. Prof. PhD Eng. Mihnea Udrea			a	
2.3 Instructor for practical activities		Assoc. Prof. PhD Eng. Udrea					
2.4 Year	III	2.5	6	2.6	Exam	2.7	Compulsory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	5	3.2	3	3.3 practical activities	3
		course			
3.4 Total hours in the curricula, out of	84	3.5	42	3.6 practical	42
which		course		activities	
Distribution of time					hours
Study according to the manual, course su	pport, l	bibliograph	y and l	nand notes	24
Supplemental documentation (library, electronic access resources, in the field, etc)				4	
Preparation for practical activities, homework, essays, portfolios, etc.			14		
Tutoring			0		
Examinations				4	
Other activities					
3.7 Total hours of individual study	40	5			
3.9 Total hours per semester	13	30			
3. 10 Number of ECTS credit points	5				

4. Prerequisites (if applicable)

4.1 curricular	Special Mathematics, Signals and Systems, Circuit Analysis and
	Synthesis, Project – Signals and Programming
4.2 competence-based	

5. Requisites (if applicable)

of itequisites (if uppit	cubic)
5.1 for running the	Not necessary
course	
5.2 for running of the	Compulsory attendance at laboratories (in accordance with the
applications	regulations for license university studies in UPB).

6. Specific competences

Professional	Applications of usual methods for acquisition and digital signal
competences	processing of continuous time signals.
	Ability to use MATLAB simulation environment for digital signal
	processing applications.
	Elementary functional digital signal processing blocks design and
	evaluation.
Transversal	Methodical analysis of the encountered problems in activity, by
competences	identifying elements with consecrated solutions, so insuring
	accomplishment of professional charges.

7. Course objectives (as implied by the grid of specific competences)

n course objecutes (7. Course objectives (as implied by the grid of specific competences)		
7.1 General objective	Presentation of basic analysis and synthesis methods and		
of the course	implementation of the usual structures in digital signal processing.		
7.2 Specific	Creation of abilities to apply general knowledge concerning techniques		
objectives	of digital signal processing in various practical applications.		
	Presentation of specific algorithms. Utilization of digital signal		
	processing in diverse technical fields. Abilities of analysis, design and		
	testing for specific functional blocks. Utilization of MATLAB		
	programming environment for simulation of the algorithms and digital		
	signal processing schemas.		

8. Content

8.1 Lectures	Teaching techniques	Remarks
Digital signals and systems – review of basic	Teaching is performed	3 hours
concepts	using an overhead	
Finite impulse response (FIR) digital filters.	projector (PowerPoint)	8 hours
Specific features. Linear phase FIR filters. Design	and classical methods at	
by windowing method. Design by frequency	blackboard, for specific	
domain sampling method. Design methods based	applications.	
on error minimization in the frequency domain.	Documentation offered	
Infinite impulse response (IIR) digital filters.	on Moodle platform	6 hours
Specific features of the IIR filters. Indirect design	(COURSE).	
methods of the digital IIR filters: design of the		
analogical prototype, transformation methods of the		
analogical prototype in a digital filter, frequency		
transformations.		
Digital filters structures.		6 hours
Direct, transposed and lattice form realizations for		
FIR filters. Direct, cascade, parallel, lattice form		
realizations for IIR filter. Shur-Cohn criterion.		

Multirate systems.		12 hours		
Decimation. Interpolation. Sampling rate				
conversion by rational factors. Equivalences	in			
multirate circuits. Efficient realizations of th				
decimation and interpolation filters. Applica				
the multirate systems: filter banks, sigma-de				
converters, transmultiplexers, subband codir				
Fast algorithms for convolution and Discr		7 hours		
Fourier Transform.		/ nouis		
Linear and cyclic convolutions: representation	ons			
segmentation procedures, fast algorithms. I				
Fourier Transform-general features. Decima				
time Radix-2 FFT algorithm and decimation				
frequency Radix-2 FFT algorithm. Mixed-ra				
algorithms, prime factor algorithm.				
Bibliography				
• • •	gnal processing techniques for telecon	munications"		
Editura Printech, ISBN 978-606-23-0		innumcations,		
		010100		
	triu, Al. Șerbănescu, L. Stanciu, Prelu	crarea		
numerică a semnalelor, Ed. Tehnică,				
	rarea numerică a semnalelor, Problem	e, partea I,		
Litografia UPB, 1998.		1 1		
	Prelucrarea numerică a semnalelor, În	drumar de		
laborator, Editura "Electronica 2000"				
• Mihnea Udrea - note de curs platforma MOODLE – anul III				
http://electronica.curs.pub.ro/2007/course/view.php?id=288				
Sophocles J. Orfanidis - Introduction to Signal Processing				
http://www.ece.rutgers.edu/~orfanidi	-	• 1 1		
	• J. G. Proakis, D. G. Manolakis: Digital Signal Processing: Principles, Algorithms, and			
Applications, Prentice Hall, 2007, 4th		11 11 1000		
	screte-time signal processing, Prentic	e Hall, 1999,		
2nd edition				
8.2 Seminar	Teaching techniques	Remarks		
1) Discrete time signals – specific	Typical problems are solved at the	3 hours		
transformations.	seminar, by analytic calculus. The			
2) FIR filters design.	seminar has a function of teaching	3 hours		
3) IIR filters design.	and also of knowledge evaluation.	2 hours		
4) Digital filters structures.		2 hours		
5) Multirate systems.		4 hours		
8.3 Laboratory	Teaching techniques	Remarks		
1) Introduction. Discrete-time signals.	The laboratory documentation is	2 hours		
Spectral representation.	available for the students in			
2) Discrete systems - general properties.	electronic form, on the Moodle	2 hours		
3) Finite impulse response digital filters.	platform.	2 hours		
4) Infinite impulse response digital filters.	Laboratory works are created to	2 hours		
5) Digital filters structures.	apply analysis, synthesis, design	2 hours		
6) Multirate systems.	algorithms presented at the course,	2 hours		
of mannate by stems.	U 1	2 110 u1 5		

7) Laboratory assessment.	on specific cases, by using MATLAB programming environment.	2 hours
8.4 Project	Teaching techniques	Remarks
1) Generating and representation in the time domain and frequency domain signals in discrete time	Homework in MATLAB to solve the studied problems	2 ore
2) Signal filtering		2 ore
3) FIR filters design	1	2 ore
4) IIR filters design		2 ore
5) Graphical interfaces for signal processing simulation		2 ore
6) Applications for multirate systems]	2 ore
7) Final evaluation]	2 ore

Bibliography

- Ad. Mateescu, S. Ciochină, N. Dumitriu, Al. Șerbănescu, L. Stanciu, Prelucrarea numerică a semnalelor, Ed. Tehnică, 1997;
- S. Ciochină, D. N. Vizireanu, Prelucrarea numerică a semnalelor, Probleme, partea I, Litografia UPB, 1998;
- C. Paleologu, M. Udrea, A. Enescu, Prelucrarea numerică a semnalelor, Îndrumar de laborator, Editura "Electronica 2000", 2004. http://electronica.curs.pub.ro/2007/course/view.php?id=143
- Sanjit K. Mitra Digital Signal Processing: A Computer-Based Approach, McGraw Hill Higher Education, 2006, 3rd edition http://highered.mheducation.com/sites/0072865466/student_view0/lab_manual.html
- Mihnea Udrea platforma MOODLE anul III http://electronica.curs.pub.ro/2007/course/view.php?id=288

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Accumulated competences allow the understanding of the new communication technologies and the afferent equipments. This discipline offers fundamental knowledge in the wide field of signal processing, that will be continued in the next year and in the numerous sections of master, by other courses, in specific fields, as image processing, multimedia signal processing, medical electronics applications.

This provides graduates with the appropriate skills and training requirements according to current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and structure, and the skills and international openness it offers to students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final mark
10.4 Lectures	- knowledge of the analysis, synthesis, implementation fundamental notions for the used	-control paper sustained in the week fixed at the begining of the semester;	15%
	structures in digital signal processing; - application mode knowledge of the analysis and design methods and abilities assimilation of testing these techniques by simulation.	-final exam in the session.	50%
10.5 Seminar	 appreciation for individual independent solving of the proposed problems; appreciation for understanding fundamental notions and concepts in digital signal processing. 	 appreciation for solving seminar problems; appreciation for solving homework problems; appreciation for solving control paper problems 	10%
10.6 Laboratory	-utilization mode knowledge of the possibilities offered by the MATLAB programming medium in the design, analysis, simulation of the discrete time or digital signal and systems;	- laboratory tests with practical and theoretical components.	15%
10.7 Project	- knowledge of the methodology to compare experimental and theoretical results.	- homework in MATLAB to solve the problems studied in the laboratory	10%
10.8 Minimal per	formance standard		
- applicatio processing	n of the adequate algorithms to sol g and the implementation of the affer n of the functionality for a simple	ent structures;	
Date	Lecturer	Instructor for pract	ical activities

Date

Lecturer

Instructor for practical activities

18.09.2017

Assoc. Prof. PhD Eng. Mihnea Udrea

Assoc. Prof. PhD Eng. Mihnea Udrea

Date of department approval

25.09.2017

Director of Department,

Assoc. Prof. PhD Eng.. Eduard POPOVICI