Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University "Politehnica" of Bucharest	
1.2 Faculty	Electronics, Telecommunications and Information	
	Technology	
1.3 Department	Applied Electronics and Information Engineering	
1.4 Domain of studies	Electronic Engineering, Telecommunications and	
	Informational Technologies	
1.5 Cycle of studies	License	
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications	
	(TSTeng)	

2. Course identification information

2.1 Name of the course			Decision and estimation in information processing				
2.2 Lecturer Pr			Prof. PhD. Eng.Mihai Ciuc				
2.3 Instructor for practical activities		Assoc. Prof. PhD. Eng. Corneliu Florea					
2.4 Year	III	2.5	6	2.6 Evaluation	Exam	2.7 Course	Mandatory
of studies		Semester		type		choice type	

3. Total estimated time (hours per semester for academic activities)

et i otal estimated time (notals per senie	50001 101	acaaciine		(3)	
3.1 Number of hours per week, out of	5	3.2	3	3.3 practical	1/1
which		course		activities	
3.4 Total hours in the curricula, out of	70	3.5	42	3.6 practical	14/14
which		course		activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes				60	
Supplemental documentation (library, electronic access resources, in the field, etc)				5	
Preparation for practical activities, homeworks, essays, portfolios, etc.					5
Tutoring					0
Examinations				20	
Other activities				0	
3.7 Total hours of individual study	60				
3.9 Total hours per semester	80				
3. 10 Number of ECTS credit points	5				
L L					

4. Prerequisites (if applicable)

4.1 curricular	Information theory, Linear algebra, probability theory
4.2 competence-based	Programming languages, Fourier series decompositioon

5. Requisites (if applicable)

5. Acquisites (il applicable)		
5.1 for running the	Does not apply	
course		
5.2 for running of the	Lab presence mandatory	
applications		

6. Specific competences

Professional competences	Dealing with scientific, engineering and informatics fundamentals. Dealing with fundamentals of devices, circuits and electronic instrumentation Applying basic signal acquisition and processing methods in typical situations.
Transversal competences	-

7. Course objectives (as implied by the grid of specific competences)

is implied by the grid of specific competences)
Study of basic principles of information processing in random processes.
Forming the abilities of measuring and evaluating random processes
towards achieving reliable information transmission chains. Basics of
random signal processing in the presence of noise, e.g., statistical
decision, parameter estimation, linear filtering of random processes.
Applications aim at students getting a hands-on understanding of taught
theoretical notions. Students are also guided towards understanding of
practical importance of statistical signal processing, by pointing out the
practical applications of presented methods.
Developing in students the ability of using random processes knowledge
in designing specific signal processing hardware, towards retrieving
information in the presence of strong perturbations. Developing in
students the ability to apply characteristic procedures for statistical
decision, parameter estimation, optimal signal filtering

8. Content

8.1 Lectures	Teaching	Remarks
	techniques	
Random variables: statistical characterization,	Teaching	6h
moments, functions of one random variables	techniques are	
Characterization of a pair of random variables:	classical,	6h
joint moments, functions of two random	chalk-and-	
variables, central limit theorem, regression,	blackboard	
correlation coefficient.	based.	
Stochastic processes: statistical		6h
characterization of order I and II, stationarity,		
ergodicity, mean ergodicity theorem		
Spectral characterization of random processes:		6h

power spectral density, Wiener-Hincin	
theorem, linear filtering of random processes,	
adapted filter.	
Statistical decision: Bayes criterion	3h
Parameter estimation: maximum a posteriori	3h
and square estimator, maximum-likelihood	
estimator, estimator quality	
Stochastic models: discrete-time signals, AR,	3h
MA, ARMA models, Yule-Walker equations	
Optimal signal filtering (Wiener filters):	3h
problem posing, orthogonality principle,	
Wiener-Hopf equations, FIR filters case;	
application: prediction, noise cancelling	
Unitary transforms:	3h
physical interpretation, optimal Karhunen-	
Loève transform, discrete cosine transform	
Signal quantization: uniform quantization,	3h
optimal Lloyd-Max quantizer, compandation	
D111 1	

Bibliography:

- 1) M. Ciuc, C. Vertan: Prelucrarea statistică a semnalelor, Ed. MatrixROM, București, 2005.
- 2) Al. Spătaru: Teoria transmisiunii informației, Editura Tehnica și Pedagogică, 1983
- 3) A. Papoulis: Probability, random variables and stochastic processes (third edition), McGraw-Hill, 1991
- 4) Course site: http://alpha.imag.pub.ro

1) Course site. http://upilu.	1111a5.pao.ro	
8.2 Practical applications	Teaching techniques	Remarks
Random variables	All labs are held using Matlab	2h
Pairs of random variables	simmulations.	2h
Stochastic processes		2h
Wiener-Hincin theorem		2h
Statistical decision		2h
Parameter estimation		2h
Final lab exam		2h
8.3 Tutorial	Teaching techniques	Remarks
Random variables	Teaching techniques are	2h
Functions of one random	classical, chalk-and-	2h
variable	blackboard based.	
Pairs of random variables		2h
Stochastic processes:		2h
stationarity, autocorrelation		
function		
Wiener-Hincin theorem, linear		2h
filtering of stochastic		
processes		
Statistical decision		2h
Parameter Estimation		2h

Bibliography

- 1) C. Vertan, I. Gavăt, R. Stoian: Variabile și procese aleatoare: principii și aplicații, Ed. Printech, 1999
- 2) Course site: http://alpha.imag.pub.ro

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Notions taught at DEPI course have a wide variety of applications, being used in extremely different domains (data classification, pattern recognition, image processing and computer vision, data compression, data communications, television etc.)

The course curriculum is thought such as to allow students recognize any of the taught problems regardless of the domain where it has been encountered and adapt it to its context.

Thus graduates are given competences which are tightly related to the necessities of current qualifications and also modern technical and scientific training which enables them to find good jobs after graduation.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the	
	criteria	methods	final mark	
10.4 Lectures	We aim to test students' acquiring basic notions; to this end, students will answer a number of questions formulated specifically to test students' understanding and to discourage undigested memorization.	Written exam	30%	
	We test students' capacity of working out real practical problems related to taught topics.	Written exam	30%	
10.5 Practical applications	Students' capability of solving random- processes related problems are tested.	Written mid-term exam	20%	
	practically manipulating random processes. aleatoare	Lab test at the end of the term.	20%	
10.6 Minimal performance standard				
The ability to identify a statistical signal processing issue (decision, estimation, filtering etc.) in a				
given practical problem and to identify possible workable solutions.				

Date 09.09.2017 Lecturer Prof. PhD. Eng. Mihai Ciuc Instructor for practical activities Assoc. Prof. PhD. Eng. Corneliu Florea

Director of Department, Prof. PhD. Eng, Sever Pasca

v

Date of department approval 25.09.2017