Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Dept. of Electronic Devices, Circuits and Electronic
	Architectures
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications
	(TSTeng)

2. Course identification information

2.1 Name of the course			Electronic Devices and Circuits (Project 1)				
2.2 Lecturer			Teaching Assistant Ph.D Eng. Laurențiu Teodorescu,.				
2.3 Instructor for practical activities			Lect. Ph.D Eng. Mihaela Pantazică				
2.4 Year	III	2.5	5	2.6 Evaluation	Final	2.7 Course	Mandatory
of studies		Semester		type	examination	choice type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	1	3.2 course	-	3.3 practical activities	1
3.4 Total hours in the curricula, out of which		3.5 course	-	3.6 practical	14
				activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					
Supplemental documentation (library, electronic access resources, in the field, etc)					
Preparation for practical activities, homeworks, essays, portfolios, etc.					
Tutoring					0
Examinations					2
Other activities					0
3.7 Total hours of individual study	38				

3.9 Total hours per semester	52
3. 10 Number of ECTS credit points	2

4. Prerequisites (if applicable)

4.1 curricular	Electro-technical Fundamentals, Electronic Devices, Fundamental		
	Electronic Circuits, Electronic Devices and Materials – laboratory,		
	Electronic Circuits – laboratory, Passive Components and Circuits, CAD		
	Techniques, Spice Models		
4.2 competence-based	General principles of electro-technical fundamentals, electronic devices,		
	electronic circuit analysis and simulation, passive components and		

circuits.

5. Requisites (if applicable)

5.1 for running the	Not applicable.				
course					
5.2 for running of the	Not applicable.				
applications					

6. Specific competences

F F F F F F F F F F F F F F F F F F F	
Professional	C1. Using the fundamental elements regarding devices, circuits and
competences	electronic instrumentation.
	C2. The application, in typical situations, of the basic methods of
	acquisition and signal processing.
	C3 - Making practical use of knowledge, concepts and methods about
	computational systems' architecture, microprocessors, microcontrollers,
	and computer programming languages and techniques.
Transversal	-
competences	

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Familiarizing the students with specific analogue circuit design				
of the course	techniques. Capitalizing on accumulated knowledge from Electronic				
	Devices, Fundamental Electronic Circuits, Passive Components and				
	Circuits, Spice Models and CAD Techniques regarding: diodes and				
	transistors (models and parameters), gain stages, negative feedback, multi-				
	stage amplifiers, regulators, oscillators.				
	Proposed project assignments consist of medium complexity circuit topologies				
	used in engineering: amplifiers, voltage regulators, oscillators, etc.				
7.2 Specific	• Practical implementation of amplifiers, voltage regulators,				
objectives	oscillators, etc. based on given design parameters.				
	• MOS and bipolar transistor models for circuit use.				
	Analogue circuit design techniques				
	• Selection and use of data sheets for active and passive devices				
	(discrete components).				
	• Circuit and design parameters evaluation (by				
	computations/simulations).				
	• Design and implementation of circuit layout (in a given				
	technology).				
	• Circuit assembling and testing.				

8. Content

8.1 Lectures	Teaching techniques	Remarks
-		
8.2 Practical applications	Teaching techniques	Remarks
8.2.1	Oral, projector-aided exposition. The	
• Project presentation.	teaching method used is problem-	
• Project assignment.	solving.	2 Hrs
• Design parameters.	The main materials are: lecture notes,	

Rationalization of knowledge referring	problem books, datasheets, most of	
to electronic devices and circuits	which are available through the	
8.2.2	project's website.	
• Selection criteria for circuit schematics		
based on circuit topologies used in		2 Hrs
engineering.		
Circuit block diagram.		
8.2.3		
• Typical schematics and design		
algorithms for: bias circuits		0.11
(voltage/current references, etc.),		2 Hrs
input/output stages, etc.		
• Device selection. Datasheet usage.		
DC and AC analyses: static and dynamic		
parameters determination for the circuit.	OBCAD simewit simewlater use as	
8.2.4	ORCAD circuit simulator usage.	
• Editing the electric schematic (OrCAD Capture CIS).		
• Simulations (CAD - PSpice). Model		2 Hrs
selection for circuit components.		
• Final component and footprint		
selection (datasheet usage).		
8.2.5		
• Layout design (OrCAD PCB Editor).		
Estimation of the density of tracks and		
components. Track width sizing. Area		
and interconnection structure length		2 Hrs
minimization.		
• Overcoming heat dissipation issues.		
• Layout verification.		
• Bill of materials (BOM).		
8.2.6	Use of CETTT laboratory facilities	2.11
• Component placement.		2 Hrs
• Testing/repair and rework.	Use of laboratory facilities	
• Electrical managements on assembled	Use of laboratory facilities	
• Electrical measurements on assembled circuit.		
• Comparison between measurements,		
simulations and computations.		2.11
• Validation of circuit operation within		∠ Hrs
specifications.		
• Cost evaluation.		
• Datasheet elaboration (for potential		
users)		
8.2.8	Use of laboratory facilities. Projector	1 ∐rs
• Presentation of the	aided exposition for final evaluation.	2 1718

	design/implementation activities.	
•	Assignment evaluation.	

Bibliography:

- 1. P. R. Gray, P. J Hurst, S. H. Lewis, R. G. Meyer, *Analysis and Design of Analog Integrated Circuits*, J. Wiley & Sons, 2001.
- 2. A. Rusu, G. Ștefan, G. Brezeanu, *Dispozitive și circuite electronice culegere de probleme de proiectare*, Institutul Politehnic București, 1991.
- 3. G. Brezeanu, F. Drăghici, Circuite electronice fundamentale, Ed. Niculescu, București, 2013.
- 4. G. Brezeanu, F. Drăghici, F. Mitu, G. Dilimoț, *Circuite electronice fundamentale probleme*, Editura Rosetti Educațional, București, ediția a II-a, 2008.
- 5. G. Brezeanu, F. Drăghici, F. Mitu, G. Dilimoț, *Dispozitive electronice probleme*, Editura Rosetti Educațional, București, 2009.
- 6. P. Svasta, V. Golumbeanu, C. Ionescu, Al. Vasile, *Componente electronice pasive Rezistoare, Proprietăți, Construcție, Tehnologie, Aplicații.*, Ed. Cavallioti, București, 2011.
- P. Svasta, Al. Vasile, Ciprian Ionescu, V. Golumbeanu, "Componente şi circuite pasive Condensatoare", Proprietăți, Construcție, Tehnologie, Aplicații., Ed. Cavallioti, Bucureşti 2010.
- 8. G. Băjeu, Gh. Stancu, Generatoare de semnale sinusoidale, Ed. Tehnică, București, 1979.
- 9. D. Dascălu, A. Rusu, M. Profirescu, I. Costea, *Dispozitive și circuite electronice*, Ed. Didactică și Pedagogică, București, 1983.
- 10. A. M. Manolescu, A. Manolescu, Analog Integrated Circuits, Ed. Electronica 2000, București, 2011.
- 11. D. Self, Audio Power Amplifier Design Handbook, Fourth edition, Newnes, 2006.
- 12. G. A. Rincon-Mora, Voltage References from Diodes to Precision High-Order Bandgap Circuits, John Wiley, 2001.
- 13. I. Ristea, C. A. Popescu, Stabilizatoare de tensiune, Ed. Tehnică, 1983.
- 14. M. Ciugudean, Proiectarea unor circuite electronice, Ed. Facla, 1983.
- 15. A. Lăzăroiu, Ş. Naicu, Generatoare de semnal analogice și digitale scheme practice, Matrixrom, 2000.
- 16. http://www.dce.pub.ro.
- 17. http://www.cetti.ro.
- 18. L. Teodorescu, G. Dima, *Dispozitive și circuite electronice Îndrumar de laborator*, Ed. Printech, 2004
- 19. L. Teodorescu, http://wiki.dcae.pub.ro/images/d/df/Oscilatoare_simulari.pdf
- 20. L. Teodorescu, http://wiki.dcae.pub.ro/index.php/Fi%C8%99ier:Stabilizatoare_simulari.pdf
- 21. L. Teodorescu, Project 1 Electronic Devices and Circuits, <u>http://wiki.dcae.pub.ro/index.php/Project_1 - Electronic_Devices_and_Circuits_(project_1)</u>

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Analogue, digital and mixed-signal circuit design represents an essential skill in electrical engineering. Current performances of companies in the field of electronics are based on design activities which, together with emerging technologies, lead to an ever expanding market of low-size and cost, high reliability/autonomy/versatility electronic devices and systems.

The electronic devices and circuits project represents a test of initiation for the future engineer regarding his activities in a design company. The project assignment corroborates specialized knowledge accumulated across the first two academic years, such as electro-technical

fundamentals, electronic devices and circuits, passive components and computer-aided-design (CAD).

The future engineer will have an understanding of the technological flow for design and manufacturing of electronic circuits (here implemented with discrete components), meeting current market demands.

After graduation, the engineer has more employment opportunities within an electronics company due to the market-imposed competences obtained through this course.

Thus, the course subscribes to the "Politehnica" University of Bucharest policy regarding structure, content and international opportunities offered to its students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final mark
10.4 Lectures	-	-	-
10.5 Project	Ability to design, simulate, implement and test a fundamental electronic circuit and its layout.	Grading students after each project stage depending on the degree of completion.	70%
	Final project presentation and defence	Final project evaluation	30%
10.6 Minimal performance standard			
- the design of a low	w/medium complexity fundan	nental electronic circuit;	

Instructor for circuit design activities,

Instructor for layout design activities, As. Ph.D Eng. Laurențiu Teodorescu, Ph. D. Lect. Ph.D Eng. Mihaela Pantazică

20.09.2017

Date

Date of department approval

25.09.2017

Director of Department, Prof. Ph.D Eng. Claudius Dan