University POLITEHNICA of Bucharest Faculty of Electronic, Telecommunications and Information Technology

COURSE DESCRIPTION

<u> </u>	
1.1 Higher education institution	University Politehnica of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Telecommunications
1.4 Study field	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License
1.6 Study program	Technologies and Systems of Telecommunications
	(TSTeng)

1. Data about the program

2. Data on discipline

2.1 Course	title			Electronic Measurin	ng Instrumer	nts	
2.2 Lecturers			Lect. PhD. Eng. Adrian Păun				
2.3 Instructors for practical activities			Lect. PhD. Eng. Alexandru Rusu-Casandra				
-		Lect. PhD. Eng. Adrian Păun					
2.4 Year	III	2.5	5	2.6 Evaluation	Exam	2.7 Type	Mandatory
of study		Semester		type		of class	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	4.5	3.2 course	3	3.3. practical	1.5
which				activities	
3.4 Total hours in the curricula, out of	63	3.5 course	42	3.6 practical activities	21
which					
Distribution time					hours
Study according to manual, course support	rt, bibl	iography			11
Supplemental documentation (library, electronic access resources, etc)					2
Preparation for practical activities, seminar / laboratory, homework, essays, portfolio, etc					22
Tutoring					
Examinations					4
Other activities					
3.7 Total hours of individual study 41					
3.9 Total hours per semester	10)4			
3. 10 Number of ECTS credits points	4				

4. Prerequisites (where applicable)

4.1 curricular	Electronic measurement in telecommunications, Electronic devices,
	Signal and systems
4.2 competence-based	General knowledge regarding signal measurement and processing
	(sampling, filtering), measuring techniques and systems (scope,
	multimeter)

5. Corequisites(where applicable)

ci corequisites ("nere	et est equisites (where upplicable)		
5.1 for running the	Not applicable		
course			
5.2 for running of the	Not applicable		
applications			

6. Specific acquired competences

	o. Speenie dequired competences				
Professional	The students have to become familiar with general aspects regarding the				
competences	main techniques and measuring devices used in electronics, focusing on				
	digital ones. The most important devices for measuring parameters in				
	time and frequency domain like digital voltmeter, DMM, digital scope,				
	spectrum analyzer are presented. The main building blocks of the digital				
	measurement devices such as and sampling, quantization, filer, mixing				
	and digital processing block are also briefly described.				
	Students have to appropriate the engineered thinking and acquire the				
	skills to estimate and predict the measurement error and deepening				
	understand of electronic schematics in general				
Transversal	An honorable, responsible and etic behavior, in accordance to the laws,				
competences	to ensure a proper reputation of this profession				

7. The discipline objectives

1	
7.1 General objective	The students have to become familiar with the main techniques and
of the course	measuring devices used in electronics, focusing on digital ones
4.2 Specific objectives	The students have to acquire specific engineering skills need to estimate of measurement errors, understanding parameters of measuring devices
	and how these parameters affect the accuracy of measurements.

8. Contents

8.1 Course	Teaching methods	Observations
Digital to analog converters	A projector is used for	
Analog to digital converters	displaying schematics, waveforms, graphics	
Digital scope	and also main ideas, bullet lists etc. The	
Digital measurement of	blackboard is used for calculations, proofs,	
electric voltage	a.s.o. The course is an interactive one and it is	

Digital measurement of	focused on the issues raised by the students.	
impedance	Course materials, lecture notes and	
Signal and function generators	presentations are available on the course site	
Spectrum analyzer	and in printed form.	
8.2 Laboratory	Teaching methods	Observations
Steady state measurements.	Students work in teams of two students each,	
Distortion measurement.	using a set of the following: Tektronix	
ADCs and DACs.	TDS1001 oscilloscope, GW-Instek SFG-2110	
Digital oscilloscope.	generator, GW-Instek GDM-8246 digital	
Impedance measurement.	multimeter, an analog millivoltmeter, a power	
Digital voltage measurement.	supply and test boards (type "solderless	
	breadboard") that they use to assemble	
	circuits from discrete components, and then	
	to measure various parameters	
Bibliography:		

[1] Course notes available online: www.radio.pub.ro

- [2] Lab notes available online: www.radio.pub.ro
- [3] V. Kester, "Data Conversion Handbook", Elsevier, 2005
- [4] "Agilent Impedance Measurement Handbook", online document
- [5] "Agilent Spectrum Analysis Basics Application note 150", online document
- [6] S. Ciochină, "Măsurări Electrice și Electronice partea II", litografia UPB, 1999

9. Discipline contents connection with expectation of epistemic community representatives, of professional associations and of major employers in the program field

The course objective, namely knowledge of the techniques and measuring instruments used in electronics, is the basic expectation from a electronics engineer able to work either in design and in operation or service

10. Evaluation

Activity	type	10.1 Evaluation criter	ia	10.2	Evaluation methods	10.3 Percentage
						of final grade
10.4 Cou	ırse	theoretical concept	irement	Wri	tten midterm exam	20%
		aspects to solve s problems, sp measurement evaluation;	specific pecially errors		Homework	10%
		- ·,			Final exam	40%
10.5 L	aboratory	Problem solving	during	The	6 laboratories are	30%

activity	laboratory sessions.	graded as an arithmetic average between a worksheet and a theoretical test.
		50% of the laboratory grade is obtained by the student from a practical exam.
Total: 100p.		

10.6 Minimum performance standard

- ability to solve standard problems connected to the material presented during lectures and laboratory sessions.

- 50p out of 100p AND 15p out of 30p (Lab activity) AND minimum 50% score at the final exam, under License Regulation of UPB. (Remark: there are: 100p is equivalent to grade 10).

Date 25.09.2017

Lecturers

Lect. PhD. Eng. Adrian Păun

Instructors for practical activities Lect. PhD. Eng. A. Rusu-Casandra

Rusul.

Lect. PhD. Eng. Adrian Păun

Dam

Date of department approval 28.09.2017

Department Director, Assoc. Prof. PhD Eng. Eduard Popovici