Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest	
1.2 Faculty	Electronics, Telecommunications and Information	
	Technology	
1.3 Department	Applied Electronics and Information Engineering	
1.4 Domain of studies	Electronic Engineering, Telecommunications and	
	Informational Technologies	
1.5 Cycle of studies	License	
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications	
	(TSTeng)	

2. Course identification information

2.1 Name	of the cours	se		Information	Transmission	Theory	
2.2 Lecturer			Prof. PhD Eng. Dan Alexandru Stoichescu			escu	
2.3 Instructor for practical activities		Lect. PhD Eng. Bogdan Cristian Florea			l		
2.4 Year	III	2.5	5	2.6	Examination	2.7	Compulsory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

× 1				/	
3.1 Number of hours per week, out of	5	3.2	3	3.3 practical activities	2
which		course			
3.4 Total hours in the curricula, out of	70	3.5	42	3.6 practical activities	28
which		course			
Distribution of time					hours
Study according to the manual, course sup	oport, bi	ibliograph	y and ha	and notes	50
Supplemental documentation (library, electronic access resources, in the field, etc)					4
Preparation for practical activities, homework, essays, portfolios, etc.				4	
Tutoring					0
Examinations					2
Other activities				0	
3.7 Total hours of individual study 60					
3.9 Total hours per semester	13	0			
3. 10 Number of ECTS credit points	5				

4. Prerequisites (if applicable)

4.1 curricular	Mathematical analysis 1 and 2; Algebra and Geometry; Foreign Language 1 and 2.
4.2 competence-based	

5. Requisites (if applicable)

5.1 for running the	None
course	
5.2 for running of the	The students have to be present during practical activities hours
applications	according to the PUB regulations.

6. Specific competences

Professional	The students must be able to apply, in typical situations, the basic
competences	methods of acquisition and signal processing.
	The design, the implementation and the operation of services of data,
	voice, video, multimedia, based on understanding and applying the
	fundamental concepts of communication and information transmission
Transversal	
competences	

7. Course objectives (as implied by the grid of specific competences)

0	
7.1 General objective	The thorough knowledge and understanding of the fundamentals and
of the course	applications of the quantity of information, source and channel
	information entropies, source coding for noiseless and noisy channels.
7.2 Specific	-understanding of the concept of information and ability to calculate the
objectives	quantity of information;
	- knowledge of definitions and mathematical methods concerning source
	and channel information entropies;
	-knowledge of source encoding for noiseless channels fundamentals:
	encoding by means of Shanon-Fano and Huffman procedures;
	- understanding of error detection and error correction philosophy;
	encoding and decoding of group, cyclic and recurrent codes methods;
	analysis and design of shift registers for encodind and decoding;
	- general knowledge of digital cryptography.

8. Content

8.1 Lectures	Teaching techniques	Remarks
1.Generals: information and	The blackboard and the	2 hours
quantity of information;	video projector, when	
fundamental concepts in	necessary, are mostly	
information transmission theory;	used in classroom. For	
fidelity criteria.	oral communication, the	
2. Information Measurement in	exposure, concept	2 hours
Discrete Signals: quantity of	understanding by solving	
information units.	problems and	
3. Information Sources	conversation methods are	5 hours
- discrete information sources;	used. For learning, the	
- entropy, rate of information,	students have, at their	
redundancy and efficiency of	disposal, note courses and	
discrete information sources;	the recommended books.	
example;		
- Markov sources.		

4. Information Communication	5 hours
Channels	
- discrete memoryless channels;	
- discrete channel characteristic	
entropies;	
- mutual information, discrete	
channel capacity, redundancy and	
efficiency; example.	
- information transmission	
continuous channel; continuous	
channel capacity.	
5. Discrete information sources	6 hours
encoding for noiseless channels	
- uniquely decodable codes,	
instantaneous codes: definitions,	
examples;	
- mean length of a code word,	
efficiency and redundancy of	
codes;	
- absolutely optimal codes;	
- noiseless channel coding	
theorem;	
-symbol by symbol encoding:	
Shannon-Fano technique, binary	
encoding procedure of Huffman.	
6. Discrete information sources	1 hour
encoding for noisy channels	
(Error correcting and error	
detecting codes)	
- error detection and correction;	
- error correcting and error	
detecting code classification;	
- characteristic features of block	
coues;	
- noisy channel Shannon theorem.	 5 hours
7. Group codes	5 nours
- code words specification, code	
Homming distance minimum	
distance decision decision regions:	
- error detection and correction	
algorithm: error word, parity check	
matrix:	
- group code encoding and	
decoding with the check matrix H	
relations between the columns of	
an e errors detecting or e errors	

correcting code;	
- the generator matrix G; group	
code encoding and decoding with	
the generator matrix;	
- the Hamming group codes;	
- the iterated codes.	
8. Cyclic codes	10 hours
 polynomial residue classes; 	
- code words specification;	
- cyclic code encoding and	
decoding with the generator	
polynomial;	
- G and H matrices of a cyclic	
code;	
- cyclic codes encoding and	
decoding for error detection with	
dividing shift registers;	
- cyclic codes encoding and	
decoding for error correction with	
feedback shift registers;	
- cyclic Hamming codes;	
- multiple errors correcting codes:	
cyclic codes specification in terms	
of the roots of the generator	
polynomial; Bose Chaudhuri	
Hocquenghem codes and Golay	
codes.	
9. Recurrent codes	4 hours
- recurrent codes structure;	
- recurrent code encoding with the	
check matrix H;	
- recurrent codes decoding by	
means of the majority logic	
method.	
10. Cryptographic systems	2 hours
 encrypting with random key; 	
- encrypting with pseudorandom	
key.	
Bibliography	

- 1. Al. Spătaru, *Teoria Transmisiunii Informației*, Editura Didactică și Pedagogică, București, 1983.
- 2. A.T. Murgan, *Principiile Teoriei Informației în Ingineria Informației și a Comunicațiilor*, Editura Academiei Romane, București, 1998.
- 3. Thomas M. Cover, Joy A. Thomas, *Elements of Information Theory* 2nd Edition, Wiley-Interscience, 2006
- 4. Rodica Stoian, Lucian Andrei Perișoară, *Teoria Informației și a Codurilor Aplicații*, Editura Politehnica Press, 2010

8.2 Practical applications	Teaching techniques	Remarks
1 Discrete first order Markov	• Computer applications	2 hours
information sources	• Matlab applications for	
2. Discrete and continuous	efficient computation of	2 hours
channels	specific performance	
3. Compact codes using	parameters	2 hours
Huffman method	• Examples of practical	
4. Hamming group codes	applications	2 hours
5 Hamming cyclic codes	• Team work (2 students)	2 hours
6. Convolutional codes	• Filling application reports	2 hours
7. Final laboratory verification	by students for each	2 hours
	laboratory	
	Handouts containing the	
	homework after each	
	laboratory class	

Bibliography

- 1. Al. Spătaru, *Teoria Transmisiunii Informației*, Editura Didactică și Pedagogică, București, 1983.
- 2. A.T. Murgan, *Principiile Teoriei Informației în Ingineria Informației și a Comunicațiilor*, Editura Academiei Romane, București, 1998.
- 3. R. Rădescu, Rodica Stoian, *Teoria Informației și a Codurilor îndrumar de laborator*, Ed. Printech, 1998.
- 4. Thomas M. Cover, Joy A. Thomas, *Elements of Information Theory 2nd Edition*, Wiley-Interscience, 2006
- 5. Rodica Stoian, Lucian Andrei Perișoară, *Teoria Informației și a Codurilor* Aplicații, Editura Politehnica Press, 2010
- 6. Bogdan Cristian Florea, Anamaria Radoi, Dan Alexandru Stoichescu, *Information Transmission Theory Laboratory*, Editura Printech, 2014

8.3 Seminary	Teaching techniques	Remarks
1. Elements of probability	• Brief presentation of the	2 hours
theory and information theory	theoretical aspects regarding	
2. Memoryless discrete	the exercise session	2 hours
sources. Discrete first order	• Solving exercises under	
Markov information sources	each studied topic	
3. Discrete channels	Individual handing evaluation	2 hours
4. Compact codes using	at each $2-3$ exercise sessions	2hours
Shannon-Fano and Huffman		
methods		
5.Hamming group codes		2hours
6.Hamming cyclic codes		2 hours
7.Convolutional codes		2 hours

Bibliography

1.Al. Spătaru, Teoria Transmisiunii Informației, Editura Didactică și Pedagogică, București, 1983.

2.A.T. Murgan, Principiile Teoriei Informației în Ingineria Informației și a Comunicațiilor, Editura Academiei Romane, București, 1998.

3.Thomas M. Cover, Joy A. Thomas, Elements of Information Theory 2nd Edition, Wiley-Interscience, 2006

4.Rodica Stoian, Lucian Andrei Perișoară, Teoria Informației și a Codurilor – Aplicații, Editura Politehnica Press, 2010

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The information considered a measurable item is an essential concept, necessary to any specialist in signal processing, signal transmission and informatics. Information sources and transmission channels evaluation by means of statistical variables is necessary to communication specialists. The recent increasing demand for reliable digital data systems asks thorough knowlwdges in the field of error detecting and correcting codes. The former remarks are undeniable arguments for the study of this discipline, the concepts taught being expected by employers and the epistemic community representatives.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the
	criteria	methods	final mark
10.4 Lectures	- thorough knowledge	- a test during the	30%
	of the fundamental	semester	
	concepts of the	-oral examination at	30%
	discipline and of the	the end of the	
	methods to operate	semester	
	with these concepts;		
	-ability to solve		
	problems concerning		
	the sources and		
	transmission channels,		
	source encoding for		
	noiseless and noisy		
	channels;		
	- capacity to select the		
	optimum solutions in		
	applications.		• • • •
10.5Practical	- understanding the	-examination at the	20%
applications	experiments	end of the semester	
	performed including		
	sofware;		
	- correct interpretation		
	of experimental		
	results according to		
	the theory		2 001
10.6 Seminary	- ability to solve ITT	-examination during	20%
	problems	the semester	

10.7 Minimal performance standard

-Knowledge and correct interpretation of fundamental concepts definitions in the fields of discrete information sources and transmission channels, noiseless and noisy channels codes; -development of optimal solutions for problems in the fields of information sources and channel statistics, source encoding for noiseless channels and error detecting and error correcting codes (in this case, the mathematical solutions have to be implemented with shift registers, too).

Date

Lecturer

Instructor for practical activities

07.09.2017

Prof. PhD Eng. Dan A. Stoichescu. Lect.

Storchesee

Date of department approval 25.09.2017

PhD Eng. Bogdan Cristian Florea

Director of Department, Prof. PhD Eng. Sever Paşca

fer -