Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest				
1.2 Faculty	Electronics, Telecommunications and Information				
	Technology				
1.3 Department	Applied Electronics and Information Engineering				
1.4 Domain of studies	Electronic Engineering, Telecommunications and				
	Informational Technologies				
1.5 Cycle of studies	License				
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications				
	(TSTeng)				

2. Course identification information

2.1 Name of the course			Automatic	Control	in Electro	onics and	
			Telecommu	nications			
2.2 Lecture	er	Prof. Dr. Dan Alexandru Stoichescu					
2.3 Instruct	tor for practi	cal activities		Lect. Dr. Bogdan Cristian Florea			
2.4 Year	III	2.5	V	2.6	Verification	2.7	Optional
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	3	3.2	2	3.3 practical activities	1	
which	0	course	_		-	
3.4 Total hours in the curricula, out of	42	3.5	28	3.6 practical activities	14	
which		course		1		
Distribution of time			•		hours	
Study according to the manual, course sup	port, b	ibliograph	y and h	and notes	24	
Supplemental documentation (library, elec	ctronic	access res	ources,	in the field, etc)	3	
Preparation for practical activities, homework, essays, portfolios, etc.						
Tutoring						
Examinations						
Other activities						
3.7 Total hours of individual study	36					
3.9 Total hours per semester	78					
3. 10 Number of ECTS credit points	3					

4. Prerequisites (if applicable)

4.1 curricular	Mathematical Analysis 1 and 2; Physics 1 and 2; Electrotechnics 1 and					
	2; Electronic Devices; Fundamental electronic Circuits; Analog					
	Integrated Circuits					
4.2 competence-based	C1. Using the fundamental elements of electronic devices, circuits,					
	systems, instruments and technology.					

5. Requisites (if applicable)

5.1 for running the	None			
course				
5.2 for running of the	Compulsory presence at the practical applications according to the			
applications	bachelor studies regulations of PUB.			

6. Specific competences

Professional	Selection,	installation	and	operation	of	fixed	and	mobile
competences	telecommu	nications equip	oment	and network	desig	gn to en	sure a	common
	telecommu	nications site.						
Transversal	-							
competences								

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective of the course	Comprehensive analysis and synthesis of linear analogical control systems.
4.2 Specific objectives	Control systems and their constituent parts analysis by means of transfer functions and state variables. Knowledge of control system performance in time and frequency. Familiarizing students with simple control system design. Description of basic control system constituents: transducers, signal conditioners, controllers.

8. Content

8.1 Lectures	Teaching techniques	Remarks
1.Introduction.	The blackboard and the video	2 hours
1.1. Definitions, control system block diagram.	projector, when necessary,	
1.2. Open control systems and feedback	are mostly used in classroom.	
control systems.	For oral communication, the	
1.3. Classification of control systems.	exposure, concept	
2. Analysis of linear continuous control	understanding by solving	4 hours
systems (LCCS) by means of transfer	problems and conversation	
functions.	methods are used. For	
2.1. Analysis of LCCS by means of	learning, the students have, at	
differential equations.	their disposal, note courses	
2.2. Transfer functions of monovariables and	and the recommended books.	
plurivariables LCCS and of their blocks.		
2.3. Analysis of LCCS in frequency domain.		
3. Analysis of LCCS by means of state		6 hours
variables.		

3.1. State variables; state and out	utnut equations		
of LCCS; examples.	utput equations		
3.2. Relations between state v	ariables model		
and transfer functions of a LCC			
3.3. Electrical, mechanical and	· 1		
analysis by means of state varial	-		
4. LCCS performances.	ones, examples.		4 hours
4.1. LCCS performances in	time domain.		- 110015
answer of a LCCS to unit pulse.			
4.2. LCCS performances in freq			
definitions.	dency domain.		
4.3. LCCS stability; Routh	-Hurwitz and		
Nyquist criteria; examples.			
5. LCCS synthesis.			6 hours
5.1.Transfer functions of electro	nic controllers		
5.2. LCCS design with stand			
and specific circuits; examples.	and controllers		
5.3. Control system with 2 poles			
5.4. LCCS design by means			
procedure.	or poer zeros		
6. Principal component blocks	s of a control		6 hours
system.			
6.1. Transducers: definitions,	classification.		
performances; examples.	, , , , , , , , , , , , , , , , , , , ,		
6.2. Signal conditioners: definiti	ons, examples.		
6.2. Controllers: structure, exam	-		
Bibliography	1		
1. Jacob, Michael: "Industrial	Control Electr	conics-Applications and Dest	ign", Prentice-Hall
International, 1989.			0
2. Dumitrache, I., Călin,S., Boța	an,C., Niţu,C., :	"Automatizări și Echipament	e Electronice", Ed.
Didactică și Pedagogică, Bucure	şti, 1992.		
3. Van de Vegte, J : <i>"Feedback</i>	Control Systems	", Prentice Hall, Englewood	Cliffs, New Jersey,
1994.	-	-	
4. Ogata, K. : "System Dynamics	s", Prentice Hall	, Saddle River, New Jersey, 1	998.
5. Stoichescu D.A,. Vasile,D. :S	isteme Automate	e – Culegere de Probleme",PU	JB, Bucharest, 1998
6. Stoichescu, D.A. : "Echipame	nte electronice d	le reglaj automat", Printech, I	Bucure;ti, 2014.
8.2 Practical applications	Teaching techn	iques	Remarks
Temperature Control	Explanations,	demonstrations and	2 hours
Light Control		eriment method are used; 3	2 hours
Level Control	and 4 students	s in a team is the ordinary	2 hours
Flow Control	arrangement.		2 hours
Pressure Control	•	experiments the modules	2 hours
Speed and Position Control	MCM-12/EV,		2 hours
Final Practical Examination		ICM-12C/EV manufactured	2 hours
	by Electronica	Veneta are used.	

Bibliography

1. Jacob, Michael: "Industrial Control Electronics-Applications and Design", Prentice-Hall International, 1989.

2. Dumitrache, I., Călin, S., Boțan, C., Nițu, C., : "Automatizări și Echipamente Electronice", Ed. Didactică și Pedagogică, București, 1992.

3. Van de Vegte, J : "*Feedback Control Systems*", Prentice Hall, Englewood Cliffs, New Jersey, 1994.

4. Stoichescu D.A, Vasile, D. : Sisteme Automate – Culegere de Probleme ", PUB, Bucharest, 1998
5. Stoichescu, D.A. : "Sisteme electronice de reglaj automat", Printech, Bucure; ti, 1999.

6. Elettronica Veneta: "TEACHER/STUDENT hanbooks of modules MCM-12/EV, MCM-12A/EV, MCM-12B/EV, MCM-12C/EV.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The early aim of the control systems, realized mostly with electronic circuits, has been the improvement of the industrial equipment work, but they are used now in very different fields: the same procedures and, sometimes, the same circuits are encountered in motor command and blood pressure monitoring. In medicine, telecommunications, transport, robotics, radar the automatic control is omnipresent and no practical application in these fields can be achieved without the knowledge of the knowledge of the basic notions and principles.

The discipline curriculum fits very well to this demand: in the first part of the course, the ground notions are rigorously defined and explained; a lot of examples are given for a total understanding of the analysis methods of the physical systems belonging to the control loops and of the control systems in totality; in the second part of the course, the control systems performances are defined and the basic design methods are developed; at the end, the role, typical structure and characteristics of the principal blocks of a control system are presented.

The course and laboratory activities are conceived in a way to make the students able to solve medium complexity problems in the field of the automatic control.

IV. Evaluation								
Type of activity	10.1	Evaluation	10.2	Evaluation	10.3	Weight	in	the
	criteria		methods		final	mark		
10.4 Lectures	-knowledg system a means o functions variables; -knowledg	of transfer and state	- two tes semester days anno beginning semester; cover the	ts during the sustained in punced at the g of the the subjects e course and in theoretic	70%			
	ability to methods f complexity design; -familiariz		requiring knowledg	and and a thorough ge and ding of the				

10. Evaluation

	-						
	operation of basic						
	components of a						
	control system:						
	transducers, signal						
	conditioners,						
	controllers.						
10.5 Practical	-knowledge of the		30%				
applications	theory concerning the						
	experiments						
	performed in the						
	laboratory;						
	-familiarizing with						
	experimental modules						
	structure and						
	understanding of their						
	operation;						
	-ability to perform						
	laboratory						
	experiments.						
10.6 Minimal performan	nce standard						
-Modeling of physical s	-Modeling of physical systems by means of transfer functions and state variables.						
-Calculating the answer of a control system to standard input signals.							
-Ability to evaluate control system stability by means of stability criteria.							

-Design, by compensation and pole-and zeroes methods of a control system.

Date

Lecturer

Instructor for practical activities

07.09.2017

Prof. PhD Eng. Dan A. Stoichescu. Lect.

PhD Eng. Bogdan Cristian Florea

Storchesau

Date of department approval 25.09.2017

Director of Department, Prof. PhD Eng. Sever Paşca

far 7