COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Dept. of Telecommunications
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	Licence (engineering)
1.6 Program of studies/Qualification	Technologies and Telecommunication Systems

2. Course identification information

2.1 Name of the course			Circuits Analy	ysis and Synthe	esis		
2.2 Lecturer			Prof. Dr. Eng. Cristian NEGRESCU				
2.3 Instructor for practical activities			As. Drd. Ing. Valentin Niță				
-		As. Drd. Ing.I	Robert Dobre				
2.4 Year of studies	II	2.5 Semester	II	2.6 Evaluation type	Exam	2.7 Course choice type	Compulsory

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	ch 7	3.2 course	3	3.3 practical activities	4
3.4 Total hours in the curricula, out of which	ch 98	3.5 course	42	3.6 practical activities	56
Distribution of time				·	hour
					S
Study according to the manual, course support, bibliography and hand notes					27
Supplemental documentation (library, electronic access resources, in the field, etc)					4
Preparation for practical activities, homework, essays, portfolios, etc.					27
Tutoring					0
Examinations				6	
Other activities					0
3.7 Total hours of individual study	58				
3.9 Total hours per semester	156				
≜					

4. Prerequisites	(if applicable)	

3. 10 Number of ECTS credit points

n i rerequisites (ii up)	
4.1 curricular	Mathematical Analysis, Special Mathematics, Electrotechnics
	Fundamentals, Signals and systems.
4.2 competence-based	Knowledge of the basic notions for: electric and electronic circuits
	theory, electrical signal processing

6

5. Requisites (if applicable)

5.1 for running the	Amphitheatre multimedia equipped (video projector)
course	
5.2 for running of the	Compulsory attendance at laboratories (in accordance with the
applications	regulations for license university studies in UPB)

6. Specific competences

or specific competence	•••
Professional	C1. Usage of the fundamental elements referring to the devices, circuits
competences	and electronic instruments
	C2. Applying, in typical situations, of the basic methods for acquiring
	and processing signals. Implementing some procedures of medium

	complexity on signal processors C6. Solving problems specific to wide bandwith communications: propagation through different transmission media, ultrahigh frequency circuits and equipments (microwaves and optical).
Transversal competences	It is not the case

7. Course objectives (as implied by the grid of specific competences)

· · · · ·	Time domain and frequency domain analysis mothods for continuous
7.1 General objective	Time domain and frequency domain analysis methods for continuous-
of the course	time, linear-time, invariant systems are presented. Time domain and
	frequency domain analysis methods for discrete time linear, time
	invariant systems are given. Matrix analysis of the two-ports is made.
	Ideal models for two-ports are analyzed. Two-port inter-connecting is
	presented. Image parameters and effective parameters for two-ports are
	studied. Realizability and synthesis of the passive one-ports are studied
	and also the algebraic relations between the parts of a system function.
	Taylor, Butterworth, Bessel and Chebyshev approximation methods of
	the transfer functions are presented. Signal flow graphs with
	applications to circuits and systems are studied. LC filters design based
	on effective parameters is presented. Active filters are analyzed and
	second order transfer functions for active filter sections, sensitivity
	functions, active filter realizations with operational amplifiers, resistors
	and capacitors are presented.
4.2 Specific	The target of the course is the students to assimilate the engineering
objectives	methods of circuit analysis and synthesis. The specific methods of the
	two-ports analysis and the main concepts connected with its description
	are given. Fundamental knowledge of physical realisability and its
	applications at the electrical circuit synthesis are presented. One of the
	purposes of the course is that the students to assimilate the main
	approximation methods with applications to the filters and correctors.
	Some methods of design for the attenuators, electrical filters and
	correctors are given.
	σ

8. Content

8.1 Lectures	Teaching techniques	Remarks
Analysis general methods of the	Teaching is performed using an	5 hours
continuous time systems. Time domain	overhead projector, that covers the	
analysis methods: convolution methods,	communication and demonstration	
method of linear differential equations with	activities. The oral communication	
constant coefficients. Methods of frequency	methods are he expository one and	
domain analysis: Fourier transform method,	the problem solving method.	
Laplace transforms method, harmonic		
method, low frequency equivalent method.		
Compact method to calculate the response		
to the continuous time periodical signals.		
Analysis general methods of the discrete		4 hours
time systems. Time domain analysis		
methods: convolution methods, method of		
finite difference equations with constant		
coefficients. Methods of frequency domain		
analysis: harmonic method, analysis		

methods using the z-transform.		
Č		
Implementation methods of the discrete		
time systems.		
Two-port analysis. 8181	hours	
Ideal models of two-ports. Passive two-port		
analysis: image parameters, effective		
parameters.		
Linear circuits realisability and synthesis.	hours	
Physical realisability of the circuits. LC,		
RC, RLC one-port synthesis. Positive real		
function getting from its real part. Transfer		
function getting from the magnitude,		
respectively from the phase.		
	hours	
elements. Definitions and graph reduction	nouis	
methods. MASON rule. Applications to the		
linear, time invariant, continuous time and		
discrete time systems.		
	hours	
circuits and systems. Introduction.	nouis	
Approximation elements. Approximation		
criterions: maximum plate approximation,		
Butterworth approximation, Bessel		
approximation, Chebyshev approximation.		
Approximation usage to the linear circuits		
and systems theory.	hours	
	nours	
pass-band and stop-band LC filters obtained		
by frequency transformations. LC filters		
synthesis using effective parameters. Active		
filters: signal flow graph analysis, active		
filter realization principles, elementary		
transfer functions, active filter sensitivity,		
realization structures.		
Bibliography		
1) I. Constantin, "Semnale și răspunsul circuitelor", București, Editura BREN, 1999		
2) Ad. Mateescu, N. Dumitriu, L. Stanciu, "Semnale și sisteme. Aplicații în filtrarea semr	nalelor",	
Editura Teora, 2001.		
3) I. Constantin, "Semnale", Tipografia Institutului Politehnic București, 1992		
 4) D. Stanomir, "Semnale și sisteme analogice", Editura Politehnica Press, 2005. 		
5) D. Stanomir, "Semnale și sisteme discrete", Editura Athena, 1997.		
	aint	
6) Ad. Mateescu, Al. Şerbănescu, N. Dumitriu, L. Stanciu, "Semnale, circuite și s	sisteme-	
probleme", Editura Militară, București, 1998.		
7) I. Constantin, S. Halunga, I. Marcu, "Semnale și sisteme-probleme", Editura Electronica 2000,		
București, 2007.		
8) M. Săvescu, T. Petrescu, S. Ciochină, "Semnale, circuite și sisteme-probleme", Editura	a	
Didactică și Pedagogică, București,1981.		
	12	
9) C. Negrescu, D. Stanomir, Semnale și sisteme-Probleme și soluții, Ed. Politehnica, 201	13,	
București.		

8.2 Seminar	Teaching techniques	Remarks
Analysis general methods of the	Teaching is based on problem	4 hours
continuous time systems.	expository by the teaching assistant and	
Analysis general methods of the discrete	their solving by all students with his /	2 hours
time systems.	her explanations and help. The students	
Matriceal parameters of the two-ports.	will solve the problem on their own, and	2 hours
Image parameters and effective	confront their results with the ones	2 hours
parameters of the two-ports.	provided by the teaching assistant.	
Symmetrical two-ports. Attenuators.		2 hours
Bisection theorem.		
Positive real functions. Reactance		2 hours
functions. RCZ and RCY functions.		
Testing methods.		
LC, RC and RLC one-port synthesis.		2 hours
Positive real function getting from its real		2 hours
part. Transfer function getting from the		
magnitude, respectively from the phase.		
Passive and active linear circuit analysis		2 hours
using signal flow graphs.		
Butterworth and Chebyshev filter		4 hours
synthesis.		
Active filters: realization structures,		4 hours
stability, active filter sensitivity.		
8.3 Laboratory	Teaching techniques	Remarks
1. Selective circuits amplifiers	The students measure independently	4 ore
2. Two-ports parameters	two-ports parameters, amplitude and	4 ore
3. Bandpass amplifiers response to AM	phase responses of the circuits using	4 ore
signals	apparatuses of the laboratory.	
4. RC active filters		4 ore
5. LC filters designed by using effective		4 ore
parameters		
6. Measurement of the elementary second		4 ore
order functions by using active filters		
7. Laboratory assessment		4 ore
Bibliography:0)		
1) I. Constantin, "Semnale și răspunsul circ	cuitelor", București, Editura BREN, 1999	
	Dumitriu, L. Stanciu, "Semnale, circuite	și sisteme
probleme", Editura Militară, București, 199		-
- ,	mnale și sisteme-probleme", Editura Electre	onica 2000

3) I. Constantin, S. Halunga, I. Marcu, "Semnale și sisteme-probleme", Editura Electronica 2000, București, 2007.

4) M. Săvescu, T. Petrescu, S. Ciochină, "Semnale, circuite și sisteme-probleme", Editura Didactică și Pedagogică, București,1981.

5) C. Negrescu, D. Stanomir, Semnale și sisteme-Probleme și soluții, Ed. Politehnica, 2013, Buc.

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

These lectures present the theory of the continuous and discrete time systems, from the perspective of the signal processing, but includes and the design of the analog passive and active filters. First time the theory is presented and in the second time an implementation is realized, which represents a fascinating confirmation of the theory value.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final mark
10.4 Lectures	 knowledge of the basic theoretical knowledge of the analysis and synthesis of the electrical circuits; application methodology knowledge of the methods in circuit analysis and synthesis; design methods knowledge of the electrical filters. 	-control paper sustained in the week fixed at the begining of the semester; – session exams.	70%
10.5 Seminar	- individual / independent solving of the proposed problems, verified with a control paper and a homework assignment; -understanding fundamental concepts in circuit analysis and synthesis.	 appreciation for solving seminar problems; appreciation for solving homework problems; appreciation for solving control paper. 	10%
10.6 Laboratory	 measurement methodology knowledge of the parameters and the circuits characteristics; knowledge of the methodology to compare experimental and theoretical results. 	Laboratory final test with practical and theoretical components. The practical component is appreciated by the measurement abilities of the parameters and the circuits characteristics. The theoretical component is appreciated by the calculus abilities for the verification of the experimental results.	20%
10.6 Minimal perfe	ormance standard		
the chain to - implementa	solve the problem;	rcuit analysis and synthesis and simple solution to solve a fund design.	-
Date	Lecturer	Instructor for practic	al activities

25.09.2017

Prof. Dr. Eng. C. Negrescu

As. Drd. Eng. Valentin Niță

NilaV.

As. Drd. Eng.Robert Dobre

Date of department approval

28.09.2017

Director of Department,

Prof. Dr. Ing. E. Popovici

.