COURSE DESCRIPTION

1.1 Higher education institution "Politehnica" University of Bucharest 1.2 Faculty Faculty of Electronics, Telecommunications and Information Technology Electronic Devices, Circuits and Architectures 1.3 Department 1.4 Domain of studies Electronic Engineering, Telecommunications and Information Technologies 1.5 Cycle of studies Undergraduate 1.6 Program of studies/Qualification Telecommunication Systems and Technologies

1. Program identification information

2. Course identification information

2.1 Name of the course			Digital Integrated Circuits				
2.2 Lecturer			Lect. Zoltan Hascsi, Ph.D.				
2.3 Instructor for practical activities			Lect. Zoltan Hascsi, Ph.D.				
2.4 Year	II	2.5 Semester	II	2.6 Evaluation	Final	2.7 Course	Mandatory
of studies				type	examination	choice type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of		3.2	3	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	42	3.6 practical	14
which		course		activities	
3.7 Distribution of time					hours
Study according to the manual, course su	pport, b	ibliograph	y and h	and notes	14
Supplemental documentation (library, electronic access resources, in the field, etc)					14
Preparation for practical activities, homeworks, essays, portfolios, etc.					20
Tutoring					0
Examinations					0
Other activities					0
3.8 Total hours of individual study 48					
3.9 Total hours per semester	104	4			
3.10 Number of ECTS credit points	4				

4. Prerequisites (if applicable)

4.1 curricular	Computers Programming. Algebra. Electronic Devices
4.2 competence-based	General principles of structured programming. Functional description of electronic devices.

5. Requisites (if applicable)

5.1 for running the	None
course	
5.2 for running of the	None
applications	

6. Specific competences

6.1 Professional	C1. Using of fundamental elements that refer to the electronic devices,				
competences	circuits and instrumentation				
	C2. Application, in typical situations, of basic methods of signal				
	acquisition and processing				
	C3. Application of knowledge, concepts and basic methods that refer to				
	the computer systems, microcontrollers, programming languages and				
	techniques				
6.2 Transversal	It is not the case				
competences					

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The course answers the following questions:		
of the course	• What is a digital system?		
	• How to describe a digital system?		
	• How to simulate a digital system?		
	• How to synthesize a digital system?		
• How to design a moderately complex digital system?			
Tackling the complexity and the functional diversity will enab			
	students to design the simplest programmable system. Thus they are		
	prepared to address the systems for which the functionality is achieved		
	by physical and informational structuring.		
7.2 Specific	Students will learn to use ModelSim and Xilinx ISE to design and verify		
objectives	their digital circuits, and FPGA boards to implement and test them.		

8. Content

8.1 Lectures	Teaching techniques	Remarks
8.1.1 Introduction:		1 hr
Analog vs. digital. Digital systems. Functional modules.		
Register.	Oral presentation	
8.1.2 Digital system example (pixel corector):	with visual support	1 hr
Functional description. Behavioral Verilog description.	(slide show)	
Simulation.		
8.1.3 Basic combinational logic circuits:		1 hr
Elemntary gates. Simple applications (zero detector,		
selector - multiplexer, adder).		
8.1.4 Basic sequential logic circuits:		3 hrs
Elementary latches. Clocked latches. Master-slave		
principle. Registers. Counters.		
8.1.5 CMOS circuits:		4 hrs
Real digital signals. MOS switches. CMOS inverter.		
NAND and NOR gates. Multiple input gates. Tristate		
circuits. Transmission gateh.		
CMOS latch. Delay flip-flop.		
8.1.6 Digital system structuring:		3 hrs
Size and complexity. Subsystems interconnection.		
Structural growth by composition. Pipeline. Autonomy in		
digital systems. Digital systems classification.		
8.1.7 Course target: the simplest programmable system:		2 hrs
Functional description.		

8.1.8 0'th order systems: combinational logic circuits Simple recursively defined circuits: decoder, demultiplexer, multiplexer, incrementer, adder, comparator.		7 hrs			
Complex circuits: ALU, multiplier, ROM					
8.1.9 1'st order systems: memory circuits		5 hrs			
Combinational loop stability.					
Serial composition: master-slave circuits					
Parallel composition: random access memory					
Word-bits expansion. Word space expansion.					
Serial-parallel composition: register.					
Applications: Synchronous memory, register set, FPGA.					
8.1.10 2'nd order systems: automata		7 hrs			
Elementary automata. T flip-flop. JK flip-flop. Counters.					
Finite state machine. FSM description and design.					
8.1.11 3'rd order systems: processors		5 hrs			
FSM with "intelligent registers". Memory closed loops.					
The elementary processor.					
8.1.12 4'th order systems		3 hrs			
Programmable systems, Asynchronous circuits.		0 110			
Metastability.					
Bibliography:					
1. Gheorghe M. Stefan, Loops & Complexity in Digital Sys	stems. Lecture Notes on I	Digital			
Design in the Giga-Gate per Chin Era.					
2 Morris Mano Michael Ciletti <i>Digital Design</i> 4th Ed P	earson-Prentice Hall 20	07			
8 3 Seminars	Teaching techniques	Remarks			
8.3.1 Introduction to Verilog (variables blocks	Teaching teeningues	2 hrs			
testhenches modules)		2 111 5			
8.3.2 Introduction to Viliny ISE (project synthesis)	Oral explanations and	2 hrs			
8.3.2 Introduction to Annix ISE (project, synthesis).	computer	2 ms			
blocking assignments, adap triggered blocking versus non-	presentation of	2 1115			
blocking assignments, edge-triggered blocks, synchronous	presentation of				
and asynchronous reset).	simulations	2 1			
8.3.4 Verilog data vectors, RAM description in Verilog.	sinulations	2 hrs			
8.3.5 Counters, dividers, and signal generators in Verilog.		2 hrs			
8.3.6 FSM description.		2 hrs			
8.3.7 Propagation delays in Verilog.2 hrs					
Bibliography:					
http://wiki.dcae.pub.ro/index.php/Digital_Integrated_Circuits					

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The course introduces the most important theoretical and practical elements that are necessary for digital design of low and medium complexity digital systems using Verilog HDL, offering specific abilities that will help students to obtain jobs in companies specialized in digital design.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the		
	criteria	methods	final mark		
10.4 Lectures	1. Knowledge of	10 quick tests	10%		
	fundamental	2 homework projects	20%		
	theoretical concepts;				
	2. Ability to describe				
	a digital circuit in	Final examination:	40%		
	Verilog;	• grid test			
	3. Ability to use	• simulation,			
	simulation and	synthesis and			
	synthesis tools;	implementation			
		test			
10.5 Practical	Specific exercises and	grid test at every class	30%		
applications	seminary work				
10.6 Minimal performance standard					
Definition, description, simulation and synthesis of a finite state automaton from an informal					
description.					

Date

Lecturer

Instructor for practical activities,

25.09.2017

Lect. Zoltan Hascsi, Ph.D.

Lect. Zoltan Hascsi, Ph.D.

Date of department approval 26.09.2017

Head of Department,

Prof. Claudius Dan, Ph.D.