COURSE DESCRIPTION

1. Program identification information

1. I Togi uni lucitante atton intormatio	
1.1 Higher education institution	POLITEHNICA University of Bucharest
1.2 Faculty	Electronics, Telecommunications and Information
	Technology
1.3 Department	Electronic Technology and Reliability
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications
	(TSTeng)

2. Course identification information

2.1 Name of	of the course			Materials for	Electronics		
2.2 Lecturer			Lecturer eng. Drăgulinescu Andrei, PhD				
2.3 Instructor for practical activities							
2.4 Year	II	2.5	3	2.6 Evaluation	Exam		Compulsory
of studies		Semester		type		choice type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	3	3.2 course	3	3.3 practical	0
				activities	
3.4 Total hours in the curricula, out of which	42	3.5 course	42	3.6 practical	0
				activities	
Distribution of time					
Study according to the manual, course support, bibliography and hand notes					
Supplemental documentation (library, electronic access resources, in the field, etc)					6
Preparation for practical activities, homeworks, essays, portfolios, etc.					0
Tutoring					0
Examinations					3
Other activities					0
3.7 Total hours of individual study	36				·

5.7 Total nours of individual study	30
3.9 Total hours per semester	78
3. 10 Number of ECTS credit points	3

4. Prerequisites (if applicable)

4.1 curricular	Physics 1, Physics 2, Chemistry, Fundamentals of Electronic Engineering 1, Fundamentals of Electrotechnical Engineering 2
4.2 competence-based	Knowledge of Physics, Chemistry and fundamentals of Electrotechnical Engineering

5. Requisites (if applicable)

5.1 for running the	Not applicable, according to current PUB regulations.
course	
5.2 for running of the	-

applications

6. Specific competences

Professional	C1. Using of fundamental elements that refer to the electronic devices,			
competences	circuits and instrumentation			
	C2. Application, in typical situations, of basic methods of signal			
	acquisition and processing			
Transversal	It is not the case			
competences				
-				

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Presentation of the structure and of the fundamental characteristics and		
of the course	properties of the materials used in electronics. Characterization of		
	conductor, semiconductor, dielectric, magnetic, superconductor and		
	organic materials and devices. Presentation of the main domains of		
	applications for materials.		
4.2 Specific	Developing the abilities to optimally use various materials in		
objectives	applications and projects; gaining the general knowledge regarding the		
	influence of the structure of the material on its properties. The		
	possibility of evaluating, from the catalogue data, the characteristics of a		
	device fabricated from a certain material. Knowledge of the limitations		
	imposed on various materials for their use in advanced electronic		
	devices fabrication. Knowledge of the properties of newly discovered		
	materials for their application in new devices.		

8. Content

8. Col	Itent		
8.1 Lectures		Teaching techniques	Remarks
STRUCTURE OF SOLID MATERIALS		Verbal communication methods that	6 hours
1.1	Introduction	are used involve the expositive	
1.2	Order in Materials	method and the problematization	
1.3	Metallic Crystalline Structures	method, used frontally. The lectures	
1.4	Fundamental Types of Lattices	are held by using classical teaching	
1.5	Crystallographic Planes	methods or multimedia facilities.	
1.6	Crystallographic Directions	The course is available in printed	
1.7	Interplanar Spacings	form (as a book).	
1.8	Crystalline Structures for Elemental		
	and Compound Materials and for		
	Alloys		
1.9	Reciprocal Lattice		
1.10	Problems and Applications		
DIST	RIBUTION OF ELECTRONS IN A		6 hours
CRYS	STAL		
2.1	Fermi Energy and Fermi Surface		
2.2	Density of States Function		
2.3	Fermi-Dirac Distribution Function		
2.4	Occupancy of Electronic States		
	(Population Density of Electrons)		
	and Calculus of the Fermi Energy		
2.5	Effective Mass of an Electron in a		
Solid			
2.6	Position and a More Rigorous		
Calcu	lus for the Fermi Energy		

2.7	Problems and Applications
	DUCTIVE PROPERTIES OF
	ERIALS
3.1	Conductivity and Ohm's Law
3.2	Conductivity in Metals, Dielectrics
	emiconductors
3.3	Conductivity in Metals – Classical
	ry of Free Electrons
3.4	Conductivity in Metals and
	netals – Quantum Theory
3.5	Electrical Resistivity of Metals and
Alloy	-
3.6	Electron Mobility and Carrier
Densi	ty in Metals and Nonmetals
3.7	Problems and Applications
DIEL	ECTRIC MATERIALS
4.1	Dielectric Properties
4.2	Theory of Polarization in Dielectrics
4.3	Types of Polarization
4.4	Dielectric Constant and Its
Deper	ndence on Frequency and Temperature
4.5	Types of Dielectric Materials
4.6	Ferroelectricity
4.7	Piezoelectricity
4.8	Electrostriction. Pyroelectricity
4.9	Problems and Applications
	ICONDUCTOR MATERIALS
5.1	Intrinsic Semiconductors
5.2	Extrinsic Semiconductors
5.3	Temperature Variation of
0.0	Conductivity and Carrier
	Concentration in Semiconductor
	Materials
5.4	Effective Masses in Semiconductors
5.5	Fabrication Techniques of
	Semiconductor Devices
5.6	Problems and Applications
	NETIC MATERIALS
6.1	Introduction
6.2	Basic Concepts
6.3	Diamagnetism
6.4	Paramagnetism
6.5	Ferromagnetism
6.6	Antiferromagnetism and
	nagnetism
6.7	Influence of Temperature on the
	etic Behaviour of Materials
6.8	Magnetic Domains and Hysteresis
0.8 6.9	
6.9 6.10	Soft and Hard Magnetic Materials
0.10	Energetic Losses in Magnetic
	Materials

6.11	Problems and Applications					
SUP	ERCONDUCTOR MATERIALS		6 hours			
7.1	Introduction					
7.2	General Properties of					
Super	rconductor Materials					
7.3	BCS Theory of Superconductors					
7.4	Type II Superconductors					
7.5	Josephson Superconducting					
	Tunneling					
7.6	High-Temperature Superconductors					
7.7	Problems and Applications					
Bibli	ography					
Callis	ster, William D. Jr., Fundamentals of M	laterials Science and Engineering, Fifth E	dition,			
John	Wiley & Sons, New York, 2001.					
Drăg	ulinescu, Andrei, Materials for Electro	nics and Optoelectronics, Matrix ROM, B	ucurești,			
2015						
Gao,	Wei and Nigel A. Sammes, An Introdu	ction to Electronic and Ionic Materials, W	orld			
Scien	tific Publishing, Singapore, 1999.					
Hum	mel, Rolf E., Electronic Properties of I	Materials, Third Edition, Springer, New Yo	ork, 2001.			
Irene	Irene, Eugene A., Electronic Materials Science, John Wiley & Sons, 2005.					
Kitte	Kittel, Charles, Introduction to Solid State Physics, Seventh Edition, John Wiley & Sons, New					
York, 1996.						
	Lee, Jiun-Haw, David N. Liu and Shin-Tson Wu, Introduction to Flat Panel Displays, John					
Wiley & Sons Ltd., Chicester, 2008.						
Martin, John W., Materials for Engineering, Third Edition, Woodhead Publishing Limited,						
	Abington Hall, Abington, Cambridge, England, 2006.					
	•	d State Physics. Problems and Solutions, J	ohn Wiley			
& So	ns, New York, 1996.					
Mitch	hell, Brian S., An Introduction to Mater	rials Engineering and Science for Chemica	and			
	Materials Engineers, John Wiley & Sons, New York, 2004.					
,	Șchiopu, Paul and Carmen Liliana Șchiopu, Materials Science, UPB, București, 2002.					
0		ns on Solid State Physics, Relativity and				
	Miscellaneous Topics, Third Edition, World Scientific Publishing, Singapore, 2003.					
8.2 P	ractical applications	Teaching techniques	Remarks			
-		-	-			
Bibli	Bibliography:					
-						

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Materials have nowadays a contribution in practically all aspects of our everyday lives. Historically, humans knew at first only a limited number of materials, comprising those occuring naturally, like stone, clay, wood, a.s.o. With the discovery of techniques for producing new materials, their applications widened. Further progress was achieved when it was discovered that, by addition of other substances to a certain material or by heat treatments applied to that material, its properties change, making it suitable for different new applications, in accordance with its new properties. In spite of these advances, only relatively recently in history (i.e. in the last about 70 years) did scientists understand the relationships between the structural elements of materials and their properties. This lead to an explosion of new applications, with tens of

thousands of different new materials, with conveniently chosen characteristics specialized for a very wide area of domains of applications.

The relationships between the structures and properties of materials which, as mentioned before, were understood only in the last 70 years, lead to developing this discipline of **materials science**. On the basis of these relationships, **materials engineering** was created, concerning the design or engineering of the structure of a material, in order to produce a desired set of properties for a specific application. These properties can be classified into six different categories: mechanical, electrical, thermal, magnetic, optical and deteriorative.

Materials science and engineering has as a goal achieving the best possible performance. This performance is a function of the material's properties, which in turn are determined by the structure, and the structure depends on how the material is processed.

This provides graduates with the appropriate skills and training requirements according to current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and structure, and the skills and international openness it offers to students.

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in
			the final mark
10.4 Lectures	- knowledge of	One test taken in the course	10%
	fundamental theoretical	of the semester	
	notions		
	- developing the ability	Mid-Term Examination	30%
	for applying the		
	theoretical notions for	Final Examination	60%
	problem solving		
10.5 Practical	-	-	-
applications			
10.6 Minimal perfo	rmance standard		
	1.1.4. 6 1. 11	41 4 1 4 4 4 4 11	1

- demonstrating the abilities of solving problems that involve treating crystalline lattices or the functions that characterize the electrons distributions in a crystal;

- comparison and characterization of different crystalline systems / highlighting the fundamental properties of conductive, insulating, semiconductor, magnetic and superconducting materials.

Date 25.09.2017

Lecturer Ş.1. Dr. Ing. Andrei Drăgulinescu

Director of Department, Conf. Dr. Ing. Marian Vlădescu

Date of department approval 26.09.2017