
POLITEHNICA University of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

LECTURES DESCRIPTION

1. Program identification information

1.1 Academic institution University POLITEHNICA in Bucharest

1.2 Faculty Electronics, Telecommunications and Information Technology

1.3 Department Dept. of Applied Electronics and Information Engineering

1.4 Domain of studies Electronic Engineering, Telecommunications and

Informational Technologies

1.5 Cycle of studies Licence

1.6 Program of studies/Qualifications Technologies and Systems of Telecommunications

2. Course identification information

2.1 Name of the course Numerical Methods

2.2 Lecturer Ş.l. dr. ing. GROSU Vlad-Alexandru

2.3 Instructor for practical activities Ş.l. dr. ing. GROSU Vlad-Alexandru

2.4 Year of study II 2.5 Semester 3
2.6 Evaluation

type

Continuous

assessment

2.7 Course

choice type
Mandatory

3. Total estimated study time (hours per semester for academic activities)

3.1 Number of hours per week 2
out of which:

3.2 lectures
1

3.3 practical

activities
1

3.4 Total hours in the curricula 28
out of which:

3.5 lectures
14

3.6 practical

activities
14

Distribution of time: hours

Study based on: official manual, lecture notes, bibliography and hand notes 16

Supplementary study materials (library, electronic access guidelines, in the field etc.) 6

Seminars/laboratories preparation, homeworks, assessments, portfolios and essays 10

Tutoring 1

Examinations 3

Other activities 0

3.7 Total hours of individual study 36

3.9 Total hours per semester 78

3.10 Number of ECTS credit points 3

4. Prerequisites (where applicable)

4.1 Curricular Algebra and Mathematical Analysis

 Computer programming

 Algorithms and data structures

4.2 Competence based

 Able to apply the knowledge, concepts and fundamental methods

in Algebra and Mathematical Analysis

 Identify and solve practical situation involving algorithms and

data structure elements, microprocessor/microcontroller specific

programming techniques and domestic usage.

5. Requisites (where applicable)

5.1 Lecture related (teaching

activities)

Video projector required, along with all related accessories (e.g. power

cable, data and signal cables, remote control).

5.2 Applications related

(seminar/laboratory)
Mandatory attendance (according to UPB's inner active Regulations)

6. Specific competences (cumulated)

Professional abilities

C1. Using of fundamental elements that refer to the electronic devices,

circuits and instrumentation

C2. Application, in typical situations, of basic methods of signal

acquisition and processing

C3: Ability to correctly apply the knowledge, concepts and

fundamental methods with respect to computational systems'

architecture, microprocessors, microcontrollers, programming

languages and techniques..

Transversal abilities

It is not the case

7. Course objectives (concluded from the grid of cumulated specific abilities)

7.1 General objective of

the course

- Lecture:

 To understand the programming field's lingo;

 To provide a comprehensive understanding of the fundamental

concepts that the typical numerical methods used in Electronic

applications and/or design rely on.;

 Acquaintance with ANSI C programming language;

 Develop algorithmic thinking and use it throughout the analysis of the

studied algorithms.

- Laboratory:

 Develop general computational routines used in typical applications

for programming field. Use C programming language in design and

implementation of programs thus ensuring their portability and

effective usage as well as their interface with the large majority of

development/design software packages based on C language.

 Present the algorithms in pseudo-code that facilitates their

implementation in a high-level programming language, whatever it

would be.

 The complete programs developed during the laboratory workshops

become useful tools for the students, not merely in their annual

projects activities or License Degree but also for their future engineer

careers.

7.2 Specific objectives

Develop skills and correctly apply the structured programming paradigms

when implementing personal programs/applications. Exercise these skills

in identification of the problems' requirements and generalize their

solutions where necessary. Choose the proper solution that offers a correct

resolution for all the problem's practical situations (so called the problem's

universe). Understand the peculiarities of the chosen solving algorithms.

Develop and exercise the ability to compare between various algorithms

for a certain problem and therefore choose the most suitable. Think about

optimized approaches for a variety of real life situations.

8. Content

8.1 Lecture Teaching techniques Remarks

Introduction.

Absolute and relative errors. The IEEE-754

floating point standard. Errors' classification

of errors in typical numerical environments.

Procedural graphs.

Interact with the students

throughout the set of

problems linked to the

teaching methods.

There are parts of the lecture

reserved for presentation and

resolution of current specific

problems.

The modeling part often

translates to the

announcement of the solving

principles of typical

programming problems

which require immediate

results.

The continuous dialogue

throughout the lecture

extends during the tutoring

meetings as well. These

meetings are necessary for

students' preparation

required, both by the

laboratory's final test and the

final examination.

3 hours

Numerical algorithms for solving

algebraic equations.

Methods used in determination of real

solutions for both polynomial equations and

transcendental equations.

2 hours

Linear and non-linear equation systems

of equations.

Direct and indirect methods.

4 hours

Numerical differentiation algorithms.

Symmetrical and asymmetrical approaches

in computing 1
st
 order derivative of a

function. Higher order differentiation

techniques.

2 hours

Numerical integration algorithms.

Quadrature and cubature methods: simple

and double integrals. Improper integrals.

3 hours

Methods used in functions

approximation.

Polynomial interpolation.

3 hours

Methods used in functions

approximation.

Regression (or optimization) methods based

on the least squares method.

2 hours

Differential equations and systems.

Euler and Runge-Kutta classes of methods.

Comparison between various algorithms.

3 hours

Numerical resolution of the integral

equations.
2 hours

Eigenvalues and vectors of eigenvalues. 2 hours

Special functions.
2 hours

Bibliography
- I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - ”Programarea calculatoarelor în limbaj C”, Editura

MatrixRom, Bucureşti, 2002.

- I. Rusu, Dana Gavrilescu, Vlad Al. Grosu – ”Îndrumar de laborator pentru programarea calculatoarelor:

C”, Editura MatrixRom, Bucureşti, 2004.

- I. Rusu, Vlad Al. Grosu – ”Programarea calculatoarelor în limbaj C: probleme rezolvate şi comentate”,

Editura MatrixRom, Bucureşti, 2008.

- D.I. Năstac, “Programarea calculatoarelor în limbajul C – Elemente fundamentale”, Editura Printech,

Bucureşti, 2006.

- D.I. Năstac, “Structuri de date ţi algoritmi – Aplicaţii”, Editura Printech, Bucureşti, 2008.

- D. Burileanu, C. Dan, M. Pădure, “Programare în C. Culegere de probleme”, Editura Printech, Bucureşti,

2004.

- Brian Kernighan, Dennis Richie – "The C programming language", Prentice Hall, New Jersey, ediţiile 1978

şi 1988.

8.2 Laboratory Teaching techniques Remarks

Numerical algorithms for solving

algebraic equations.

In the first place a short review of

the theoretical approaches on the

subject is given.

The goal is for the students to

write fully functional programs

based on the provided pseudo-

code in the guidelines.

The programming language is

ANSI C (according to either

 -std=c99 or –std=c11)

Practical problems are fully

presented. This approach offer

the possibility to perform

comparative evaluations and to

take the optimum decisions when

several algorithms are available

for a given problem, so that one

could choose the most suitable

program in a real situation.

2 hours

Linear and non-linear equation systems

of equations.
2 hours

Numerical differentiation and

integration algorithms.
2 hours

Numerical interpolation. 2 hours

Optimisation methods. 2 hours

1
st
 order differential equations. 2 hours

Final examination. 2 hours

Bibliography
- I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - ”Programarea calculatoarelor în limbaj C”, Editura

MatrixRom, Bucureşti, 2002.

- I. Rusu, Dana Gavrilescu, Vlad Al. Grosu – ”Îndrumar de laborator pentru programarea calculatoarelor:

C”, Editura MatrixRom, Bucureşti, 2004.

- I. Rusu, Vlad Al. Grosu – ”Programarea calculatoarelor în limbaj C: probleme rezolvate şi comentate”,

Editura MatrixRom, Bucureşti, 2008.

- Brian Kernighan, Dennis Richie – "The C programming language", Prentice Hall, New Jersey, ediţiile 1978

şi 1988.

- Herbert Schildt – "C – manual complet", Editura Teora, 1999-2003.

- Florin Munteanu, Gh. Muscă, Florin Moraru – "C - tehnici de programare", Editura Joint Printing House,

Bucureşti, 1995.

9. Linking the course content to the expectations of the epistemic community and from the most

representative professional associations and employers for the domain of the program

Nowadays the numerical algorithms area requires well-prepared future researchers and developers.

Therefore, the students have to have strong backgrounds in the mathematical methods applied in this field

with respect to the design, testing and signal processing contexts. The students' preparation on a common

programming branch has a well-defined purpose: offer the fundamental backgrounds necessary in any

future professional activities.

The Computers programming related teaching activities offers the backgrounds of the algorithmic

thinking as well as the fundamentals required by any programming language one can use today. The

ANSI C programming language is a well-maintained and developed one, its latest standard being ISO/IEC

9899:2011.

According to the curriculum's schedule and the tutoring activities, the offered information follows the

necessary steps required to identify and highlight each program's, project's, concept's, method's or theory's

qualities and limitations.

Politehnica University of Bucharest is already part of the most recent European Union's academic

regulations. The adequate usage of evaluation criteria and methods - in agreement with these regulations -

offer the meanings for students' continuous self-evaluation. The evaluation process relates to the marks as

well to the methodological notes and directives that the lectures/laboratories holders offer.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods
10.3 Contribution to the

final mark (%)

10.4 Lecture Correct identification of

theoretical and practical

conditions required by the

presented methods and

techniques.

Diving into specific notions

of algebra and mathematical

analysis required in

Electronics (fundamental

preparation domain).

C4.1: Definition of the

concepts, principles and

methods used in: computer

programming, high-level

programming languages,

computational systems

architecture, programmable

electronic systems,

computer graphics and

reconfigurable software

architectures.

Final examination.

Covers both the theoretical

and computational aspects

presented throughout the

semester.

The final timed examination

requires analysis and

synthesis skills in order to

find solutions of typical

programming problems by

applying the suitable

algorithms.

50%

10.5 Laboratory C4.5: Attend and promote

an examination test that

involves concepts related to

the architecture and

functional principles of a

functional software

structure.

C6.5: Attend an

examination test that

involves the ability to

establish and then describe

all the necessary operations

involved by the

implementation and testing

Constant review of the

presented concepts, through

short timed tests.

The students can accumulate:

- 15%, as a result of short

quizes (10' per test);

- 10%, from homework.

- 35%, final examination.

The lab ends with a final

examination, taken

individually, each

student having a

dedicated workstation.

One has to: - write an

ANSI C program that

50%

of a typical programming

algorithm.

correctly implements the

algorithm required in

order to solve a certain

problem.

- give short answer to

theoretical question that

synthesizes the concepts

presented throughout the

semester.

10.6 Minimum performance standard:

Check the analysis and synthesis skills in identification of practical conditions of the lectured methods as

well as in solving typical programming problems.

In order to promote the course one has to accumulate at least 50 points out of the total amount of 100

points. No intermediate thresholds are required.

Date, Lecturer and Instructor for practical activities,

25.09.2017 Ş.l. dr. ing. Vlad-Alexandru GROSU

Date of Department's approval, Director of Department,

26.09.2017 Conf. dr. ing. Marian VLĂDESCU

