Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	POLITEHNICA University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Department of Applied Electronics and Information
	Engineering
1.4 Domain of studies	Electronics and Telecommunications Engineering
1.5 Cycle of studies	License
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of	of the cours	e		Advanced N	Aathematics		
2.2 Lecturer			Assoc. Prof. Dr. Irina Meghea				
2.3 Instruct	2.3 Instructor for practical activities		Assoc. Prof. Dr. Irina Meghea				
2.4 Year	Ι	2.5	II	2.6	Exam	2.7	Compulsory
of studies		Semester		Evaluation		Course	
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	4	3.2	3	3.3 practical	1
± '	4		3	-	1
which		course		activities	
3.4 Total hours in the curricula, out of	56	3.5	42	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					40
Supplemental documentation (library, electronic access resources, in the field, etc)					3
Preparation for practical activities, home works, essays, portfolios, etc.					15
Tutoring					0
Examinations				3	
Other activities			0		
3.7 Total hours of individual study 58					
3.9 Total hours per semester	1	14			
3. 10 Number of ECTS credit points	3				

4. Prerequisites (if applicable)

4.1 curricular	Basic notions of mathematical analysis and linear algebra studied in the first year, first semester
4.2 competence-based	No appropriate

5. Requisites (if applicable)

5.1 for running the	No appropriate
course	
5.2 for running of the	No appropriate
applications	

6. Specific competences

Professional	Accumulation of knowledge on advanced mathematics, especially
competences	Probability, Statistics with their use and interpretation, notions of
	distribution theory and Fourier transform need to the technical higher
	education, particularly notions need to provide a deeper understanding
	of specialty disciplines.
Transversal	Development skills to approach and solve any scientific problems by
competences	widening horizon and reasoning capacity conferred by mathematics on
	an early development stage of the student.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Fundamental discipline need in approaching any specialty approaching.
of the course	Presentation of main chapters of probability, statistics, distributions and
	Fourier transform with focus on further specialization.
7.2 Specific	Ability to use the abstract reasoning and of calculus techniques with
objectives	accent on its correct finalization, not only to have an idea about it, since
	an engineer should to solve a problem until the end.

8. Content

8.1 Lectures	Teaching techniques	Remarks
Sample space and events.	Teaching is based on	3 hours
Probability. Conditional	presentations at the	
probability and Bayes formula	blackboard, in a permanent	
Random variables.	discussion with the students in	3 hours
Cumulative distribution	order to involve them in	
functions. Probability density	clarification of notions and	
functions. Moments. Mean	applications.	
and variance	Lecture materials are the notes	
Random vectors. Covariance,	and the presentations and	3 hours
correlation coefficient.	books of theory and solved	
Regression line	and proposed problems.	
Classical probability density	Use of the video projector to	3 hours
functions and joint probability	present the programs for	
distributions	statistics.	
Marginal probability		3 hours
distributions. Conditional		
probability distributions.		
Independent random variables.		
Functions of random variables		

Sequences of random	3 hours
variables. Law of big numbers.	5 110015
Central limit theorem	
Random processes. Markov	3 hours
chains	
Random sampling and data	3 hours
description. Unbiased	
estimations. Confidence	
intervals	
Linear regression and	3 hours
correlation. Design of	
experiments with several	
factors. Use and interpretation	
programs	
Verification of statistical	3 hours
hypotheses. Statistical tests	
Distributions	3 hours
Discreet Fourier transform.	3 hours
Fourier series	
Fourier transform	3 hours
Wavelets and the	3 hours
reconstruction of the signals	

Bibliography:

1. Irina Meghea, *Matematici speciale*. *Teorie și aplicații*". Editura POLITEHNICA Press, Bucirești, 2011

2. Irina Meghea, Zaharoula Andreopoúlou, Mihaela Mihai, "Applied Statistics for Engineers. Using MATLAB and other specific programs", Ed. POLITEHNICA Press, București, in print

3. Douglas Montgomery, George Runger, "Applied Statistics and Probability for Engineers", John Wiley and Sons, Inc., 2003

4. David Bourg, "Excel Scientific and Engineering Cookbook", O'Reilly Publisher, 2006

5. Joaquim Marques de Sá, "Applied Statistics. Using SPSS, STATISTICA, MATLAB and R", Springer Verlag, Berlin, Heidelberg, 2007

6. George Morgan, Nancy Leech, Gene Gloeckner, Karen Barrett, "SPSS for introductory statistics. Use and interpretation", LEA Publishers, London, 2004

7. Nancy Leech, Karen Barrett, George Morgan, "SPSS for intermediate statistics. Use and interpretation", LEA Publishers, London, 2005

8.2 Practical applications	Teaching techniques	Remarks
Sample space and events.	Propose problems, explain the	2 hours
Probability. Conditional	calculus methods and involve	
probability and Bayes formula	the students in discussions and	
Random variables. Cumula-	the solutions of the exercises	2 hours
tive distribution functions.	by work to the blackboard.	
Probability density functions.	Give homework with solved	
Moments. Mean and variance	and proposed problems.	

Random vectors. Covariance,	Learning materials: three	2 hours
correlation coefficient.	books which present and	
Regression line	explain the theory, containing	
Classical probability density	solved and proposed exercises.	2 hours
functions and joint probability		
distributions. Independent		
random variables. Functions		
of random variables		
Random sampling and data		2 hours
description. Unbiased		
estimations. Confidence		
intervals		
Verification of statistical		2 hours
hypotheses. Statistical tests		
Fourier transform		2 hours

Bibliography

1. Irina Meghea, *Matematici speciale*. *Teorie și aplicații*". Editura POLITEHNICA Press, Bucirești, 2011

 Irina Meghea, Zaharoula Andreopoúlou, Mihaela Mihai, "Applied Statistics for Engineers. Using MATLAB and other specific programs", Ed. POLITEHNICA Press, Bucureşti, in print
Douglas Montgomery, George Runger, "Applied Statistics and Probability for Engineers", John Wiley and Sons, Inc., 2003

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

As a result of modern evolution in sciences and techniques, in natural sciences and generally in any modeling of real phenomena, mathematics is compulsory. Contribution of this discipline should be considered as fundamental and have to be highlighted the way how the specialty study is necessary and how it complies with specific elements of training in this faculty.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the
	criteria	methods	final mark
10.4 Lectures	- to know the	- partial verification	80%
	fundamental	(weight 20%)	
	theoretical notions	established from the	
	- the capacity to apply	beginning of the	
	the theoretical	semester	
	knowledge in	- final exam (written),	
	problems	weight 50%	
		The subjects to both	
		verifications cover all	
		the matter.	

		- homework (weigh		
		10%)		
10.5 Practical	Starting from a	- a verification test	20%	
applications	summary of the	(10%)		
	notions and basic	- a permanent		
	results, apply them in	quantification of the		
	exercises and solve	student activity at		
	problems	practical applications		
		(10%)		
10.6 Minimal performance standard				
Date	Lecturer	Instructor for	practical activities	
12.10.2015	Assoc. Prof. Dr. Irina	Meghea Assoc. Prof. I	Assoc. Prof. Dr. Irina Meghea	
Date of department approval		Director of Department,		
		·····		