COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Telecommunications
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	Licence
1.6 Program of studies/Qualification	Telecommunication Technologies and Systems (TSTeng)

2. Course identification information

2.1 Name of the course			Measurements in Electronics and Telecommunication			mmunications	
2.2 Lecturer			Lect. eng. Ioana MARCU, PhD				
2.3 Instructor for practical activities			Lect. eng. Ioana MARCU, PhD				
2.4 Year	I	2.5	2				Compulsory
of studies		Semester		type choice type			

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which	3.5	3.2 course	2	3.3 practical activities	1.5
3.4 Total hours in the curricula, out of which	49	3.5 course	28	3.6 practical activities	21
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					
Supplemental documentation (library, electronic access resources, in the field, etc)					
Preparation for practical activities, homework, essays, portfolios, etc.					
Tutoring					0
Examinations					4
Other activities					0
3.7 Total hours of individual study	55				•

3.7 Total hours of individual study	55
3.9 Total hours per semester	104
3. 10 Number of ECTS credit points	4

4. Prerequisites (if applicable)

4.1 curricular	Fundamentals of Electrical Engineering 1, Physics, Passive Components
	and Circuits (CPP)
4.2 competence-based	Basic knowledge of mathematics

5. Requisites (if applicable)

5.1 for running the	Not applicable, according to current PUB regulations.
course	
5.2 for running of the	Compulsory presence at laboratory classes, according to current PUB
applications	regulations.

6. Specific competences

Professional	C1. Using of fundamental elements that refer to the electronic devices,		
competences	circuits and instrumentation		
	C2. Application, in typical situations, of basic methods of signal acquisition and processing		
Transversal	Not the case		
competences			

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	The purposes of this course are to provide knowledge related to different
of the course	techniques and measurement equipment used in electronics area, as well
	as design and implementations of complex circuits made with different
	components. For these circuits measurement of basic and particular
	parameters should be determined.
4.2 Specific	The specific objectives of the course are related to gathering specific
objectives	engineering skills to estimate measurement and implementation errors,
	understanding the parameters for measurement equipment and their
	relevance in the measurement process.

8. Content	•	
8.1 Lectures	Teaching techniques	Remarks
Introduction: Periodic signals: shapes and	Teaching is based on the usage of	2 hours
parameters. Exercises.	video projection (for communication	
Instruments for periodic signals	and demonstration) for presentation	2 hours
measurement: types of electronic	of charts, graphs, main ideas and so	
measurement systems, signal generators;	on, as well as sheets for calculations,	
oscilloscope (basic presentation). Exercises.	demonstrations, etc.	
Oscilloscope: analog oscilloscope	The course has an interactive nature,	4 hours
(TEKTRONIX 2235). General	aiming at asking questions and	
configuration of analog oscilloscope: Y	getting answers from the students,	
channel, synchronization system and time-	which helps them to understand the	
base, display, cathode ray tube, X channel.	concepts taught.	
General configuration of digital	The course materials are the course	
oscilloscope.	notes and handouts and proposed	
Detailed presentation of Y channel:	exercises (both theoretically and	4 hours
functions, main settings and adjustments,	computer-aided solved). All materials	
performance parameters, amplitude-	are available in electronic form via	
frequency characteristics, main blocks,	the course site (Moodle).	
functionality modes.		
Detailed presentation of X channel:		4 hours
synchronization system and time-base,		
conditions for signals' synchronization		
(exercises), other adjustments and working		
modes of time-base system. Block diagram		
of X channel. Double time-base		
oscilloscope.		
Voltage and currents measurements: general		4 hours
aspects, measurement units, quadri-ports,		
frequency-amplitude characteristics for low-		
pass/high-pass filter (exercises).		
Measurement errors: relative error, absolute		
error, reference error, error propagation.		
Exercises.		
Periodic signal parameters: mean value,		2 hours
root-mean square value, absolute mean		
value, shape/peak factor. Exercises. AC/DC		
voltage measurements. Exercises.		
Impedance measurements: impedance		4 hours
characterization, dissipative reactors, series-		
to-parallel equivalence. Exercises.		

Resistances measurements in direct current:	
Wheatstone bridge. Exercises.	
Complex impedance measurement:	2 hours
alternative voltage bridges, classifications,	
bridges for measuring capacitors (Sauty,	
Nernst), bridges for measuring coils	
(Maxwell, Hay, Owen). Exercises.	

Bibliography

- 1) R. Stănculescu, M. Stanciu, "Măsurări Electrice și Electronice- partea I", litografia UPB, 1998
- 2) S. Ciochină, "Măsurări Electrice și Electronice partea I", litografia UPB, 1995
- 3) B. M. Oliver, J.M. Cage, "Electronic Measurements and Instrumentation", Mc. Graw-Hill, 1971
- 4) Course website available in english:

http://electronica.curs.pub.ro/2016/course/view.php?id=99 (Holder: Ioana Marcu)

8.2 Practical applications	Teaching techniques	Remarks
Generating and visualization of signals	Laboratory work is done in teams of two	3 hours
Measurements using the oscilloscope	students each, with Tektronix TDS1001	3 hours
Building and measuring circuits on a	oscilloscope available, a RIGOL	3 hours
breadboard	generator, a GW-Instek GDM-8246	
Measuring the transfer function	digital multimeter, an analog	3 hours
Voltage measurements	millivoltmeter, a power supply and test	
Impedance measurements	boards (type "solderless breadboard")	0 110 0110
Building and measuring an audio	that they use to assemble circuits from	3 hours
oscillator; recap	discrete components, and then to	
	measure various parameters. The	
	didactical materials are the theoretical	
	and practical instructions from the lab	
	guide.	

Bibliography:

- 1) Lab platforms available at: http://ham.elcom.pub.ro/metc/index.html
- 2) M. Stanciu, A. Păun, Ş. Obreja, **I. Marcu**, ş.a. "Instrumente Electronice de Măsură îndrumar de laborator", Editura Electronica 2000, București, 2008 (97 pag.), ISBN 978-973-7860-10-1
- 3) Lab support available at: http://electronica.curs.pub.ro/2016/course/view.php?id=99 (Holder Ioana Marcu)

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The course of Measurements in Electronics and Telecommunications represents a crucial step in the complex area of Electronis and Telecommunications so that the achieved knowledge and notions from this course will stand as a solid base for the future specialized engineers graduating this faculty.

The main goal of this course, knowledge of basics techniques and measurement equipments used in electronics domain, stands as a basic ground expected from the future engineers in order for them to be able to work both in designing, exploiting and service area.

This provides graduates with the appropriate skills and training requirements according to current qualifications, and a modern, high quality and competitive scientific and technical training, enabling them acquiring a working place after the graduation. The course fits therefore perfectly to the Bucharest Polytechnic University policy, considering both its content and structure, and the skills and international openness it offers to students.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final mark
10.4 Lectures	theoretical aspects related to functioning of electronic measurement equipment; - analytical and numerical	- final exam: the subjects cover the entire course material, being a synthesis between the comparative theoretical knowledge and the application of the theory when solving problems and exercises.	40%
10.5 Practical applications	- 7 lab studies + practical test in the day of the final exam	The final lab exam consists of a practical examination, during which the student must design, implement and measure basic parameters for a certain circuit built on the breadboard.	60%

10.6 Minimal performance standard

- theoretical identification and determination of the main circuits used dor voltages and currents measurement as well as for impedances measurements (real or complex) and basic parameters computation for the circuits;

- design, implementation and practical functioning of circuits on breadboard; use and manage of corresponding measurement equipment in order to determine specific parameters of the circuits.

Date 25.09.2017

Lecturer Lect. eng. I. Marcu, PhD Instructor for practical activities

Lect. eng. I. Marcu, PhD

Date of department approval

Director of Department,

26.09.2017

Assoc. Prof. Eng. E. Popovici