COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institutionPOLITEHNICA University of Bucharest		
1.2 Faculty	Faculty of Electronics, Telecommunications and	
	Information Technology	
1.3 Department	Electronic Technology and Reliability	
1.4 Domain of studies	Electronic Engineering, Telecommunications and	
	Information Technologies	
1.5 Cycle of studies	Licence (engineering)	
1.6 Program of studies/Qualification	Telecommunications Technologies and Systems	

2. Course identification information

2.1 Name of	of the	course	Data Structures and Algorithm			is (SDA)		
2.2 Lecture	cturer Assoc. prof. dr. eng. Dumitru-Iulian NĂSTAC			С				
2.3 Instruct	tor fo	r practical ac	tivities	s Dr. eng. Virgil ILIAN				
2.4 Year	1	2.5	2	2.6 Evaluation Verification 2.7 Course Man			Mandatory	
of studies		Semester		type		choice type		

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	3	3.2	2	3.3 practical	1
which		course		activities	
3.4 Total hours in the curricula, out of	42	3.5	28	3.6 practical	14
which		course		activities	
Distribution of time					hours
Study according to the manual, course su	pport, b	oibliograph	y and h	and notes	20
Supplemental documentation (library, electronic access resources, in the field, etc)					
Preparation for practical activities, homeworks, essays, portfolios, etc.					
Tutoring					
Examinations					
Other activities					
3.7 Total hours of individual study 62					
3.9 Total hours per semester	104	4			
3. 10 Number of ECTS credit points	4				

4. Prerequisites (if applicable)

4.1 curricular	Computer Programming
4.2 competence-based	General knowledge of computer programming in C.

5. Requisites (if applicable)

5.1 for running the course	Not applicable
5.2 for running of the applications	Compulsory presence at laboratory classes, according to
	current UPB regulations.

6. Specific competences

Professional	C3. Applying the knowledge, concepts and methods concerning the
competences	computing systems architecture, microprocessors, microcontrollers,
	programming languages and computing techniques.
Transversal	CT1. Methodical analysis of the problems encountered in practical
competences	activity, by identifying the items for which there are dedicated solutions,
	ensuring the accomplishment of the professional tasks.
	CT3. Adapting to new technologies, professional and personal
	development through a continuous training by using documentation of
	printed sources, specialized software and electronic resources in at least
	one international language (English).

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Learn the principles of data acquisition, storage, and complex data
of the course	structure processing. Study of the basic principles in software design as
	decisive phases on reliable applications. Efficient program designing
	criteria. Case studies and performance evaluation methods for the
	discussed algorithms.
7.2 Specific	Acquiring programming skills (specific to the presented course) by
objectives	implementing software applications and the learned data structures.
	Design of practical applications that involve data structures and various
	algorithms.

8. Content

8.1 Lectures	Teaching techniques	Remarks
1. Introduction	Teaching is carried out using video	4 hours
1.1. Data types: structures, unions, pointers,	facilities. During classes, a	
array	permanent interaction between	
1.2. Programming paradigms	students and professor is	
1.3. Structured programming	maintained. Students are stimulated	
1.4. Recursion	to develop solutions and discuss	
2. Basic notions concerning data structures	various programming exercises	2 hours
2.1. Static and Dynamic Representations	thus stimulating their creativity.	
2.2. Specific Functions	Course materials consist of class	
3. Linked lists and associated algorithms	notes, class bibliography and the	6 hours
3.1. Singly-linked lists. Doubly -linked lists.	platforms for the practical	
3.2. Linearly-linked list. Circularly-linked	applications. All the materials are	
list.	available to students on the course	

3.3. Queue (FIFO) and Stack	ts (LIFO)	website.		
4. Tree structure and assoc	iated algorithms	(www.euroqua	l.pub.ro/downloads)	6 hours
4.1. Definitions.	8		•	
4.2. Implementing of trees.				
4.3. Binary tree. Iterating over	er binary trees.			
4.4. Search.	j i i j			
4.5. Selection.				
5. Graph theory				4 hours
5.1. Definitions.				
5.2. Adjacency matrix.				
5.3. Adjacency list.				
5.4. Graph path searching.				
6. Other general algorithm	S			6 hours
6.1. Sort Algorithms				
6.2. Search Algorithms				
6.3. Algorithms Efficiency				
Bibliography				
- course notes and laboratory	files (provided by	course lecturer)	•	
http://www.euroqual.pub.ro/do	wnload/	,		
and on moodle (http://electro	onica.curs.pub.ro/20	016/course/view	.php?id=8)	
- Bruce Eckel, Thinking in C	++, 2nd edition, P	rentice Hall, 200	0, ISBN: 0139798099)
- Kris Jamsa and Lars Kl	ander, Jamsa's C	C++ Program	ner's Bible, Publishe	er: Cengage
Learning, US, 2010, ISBN: 1	884133258			
- Dumitru Iulian Năstac, Str	ructuri de date și d	algoritmi – Aplie	cații, Editura Printech	, București,
2008. ISBN 978-973-718-98	9-9.			
- Dumitru Iulian Năstac, Pro	ogramarea calcula	toarelor in limb	ajul C – Elemente fu	ndamentale,
Editura Printech, București, 2	2006, ISBN 973-71	18-464-5		
8.2 Practical applications	Teaching techni	ques	Remarks	
Data structures	The practical ap	plications are	2 hours	
Linked lists	carried out indiv	idually by	2 hours	
Queues and Stacks	each student. Ea	ch student has	2 hours	
Applications	access to a fully	equiped PC		
Trees Applications	machine. Progra	mming is	2 hours	
Search algorithm	carried out using	g the Dev-C++	2 hours	
applications	environment. St	udents have to		
Evaluation of a project	study the materi	als prior to	2 hours	
Laboratory test	each of the prac	tical sessions.	2 hours	
Bibliography				
- laboratory files (provided b	y course lecturer):	http://www.euroo	ual.pub.ro/download/	
and on moodle (http://electro	nica.curs.pub.ro/20	016/course/view	.php?id=8)	

- Bruce Eckel, *Thinking in C++*, 2nd edition, Prentice Hall, 2000, ISBN: 0139798099

- Kris Jamsa and Lars Klander, *Jamsa's C/C++ Programmer's Bible*, Publisher: Cengage Learning, US, 2010, ISBN: 1884133258

- Dumitru Iulian Năstac, "Structuri de date și algoritmi – Aplicații", Editura Printech, București, 2008. ISBN 978-973-718-989-9.

- Dumitru Iulian Năstac, *Programarea calculatoarelor in limbajul C – Elemente fundamentale*, Editura Printech, București, 2006, ISBN 973-718-464-5

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

It is a big need for qualified engineers, specialized in computer programming and software applications, with a strong background in electronics, information technology and systems, to track the quick changes in software and hardware development.

The proposed curriculum fits exactly these modern advancement requirements, derived from the electronic engineering services required by the European economy. Considering the current technological progress in electronic devices, the envisaged fields are in fact open, starting with microelectronics, optoelectronics, telecommunications, industrial control (product evaluation), robotics (brain-machine interfaces), etc.

The students get then the adequate competences, as required by the current demanded professional skills, having a modern, competitive and high-level scientific and technical education. This allow them a fast integration in the labor market, as desired at University Politehnica of Bucharest, based not only on the content and the structure of the subject, but also on the gained skills and international opportunities offered after graduation.

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the
	criteria	methods	final mark
10.4 Lectures	- knowing the basic	Verification at the end	50 %
	knowledge;	of the semester.	
	- knowing to apply the	Topics cover the	
	theoretical knowledge	entire course	
	to solve specific	bibliography as well	
	problems;	as the practical	
	- quantitative	aspects of	
evaluation of the		programming in C.	
theoretical methods			
	and techniques.		
10.5 Practical	- practical knowing of	Final exam at	50 %
applications	the basic data	laboratory (oral and	
	structures and their	on computer), with	
	processing algorithms	particular emphasis on	
	to solve specific	the practical	
	problems	component. Assessing	
	- knowing how to	a homework project,	
	write, control and	in order to estimate	
	debug programs	the practical skills.	

10. Evaluation

	- testing the programs							
10.6 Minimal performa	10.6 Minimal performance standard							
- solve a real problem u	sing various algorithms a	and data structures;						
- designing, implementation, and demonstration of a solution based on the use of data structures								
and algorithms for a spe	cific problem;							
- assessing the practical	l skills during the design	of a program (using the	data structures and the					
algorithms).								

Date

Lecturer

Instructor for practical activities

25-09-2017

Assoc. prof. dr. eng. Iulian NĂSTAC

Dr. ing. Virgil ILIAN

1

Date of department approval

Director of Department,

Assoc. prof.dr.ing. Marian VLĂDESCU

27.09.2017