COURSE DESCRIPTION

1. Program identification information

	·
1.1 Higher education institution	Politehnica University of Bucharest
1.2 Faculty	Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Physics
1.4 Domain of studies	Electronic Engineering, Telecommunications and
	Informational Technologies
1.5 Cycle of studies	Licence
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications
	(TSTeng)

2. Course identification information

2.1 Name of the coursePhysics 2							
2.2 Lecturer			Prof. Dr. Ing. Alexandru LUPAŞCU				
2.3 Instructor for practical activities		ctical activities Ş.I. Dr. Ana-Maria POPOVICI					
			Ş.l. Dr. Ioana IVAŞCU				
2.4 Year	Ι	2.5	2	2.6 Examination 2.7 Required			Required
of		Semester		Evaluation Course			
studies				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

5. Foral commander mile (nours per se	mester	IOI acadel	ine acti	vitics)	
3.1 Number of hours per week, out	4	3.2	3	3.3	0/1
of which		course		seminars/laboratory	
3.4 Total hours in the curricula, out	56	3.5	42	3.6 practical	0/14
of which		course		activities	
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes					30
Supplemental documentation (library, electronic access resources, in the field, etc)					6
Preparation for practical activities, homework, essays, portfolios, etc.					6
Tutoring					3
Examinations					3
Other activities					
3.7 Total hours of individual study		48			
3.9 Total hours per semester		104			
3. 10 Number of ECTS credit points		4			

4. Prerequisites (if applicable)

4.1 curricular	Physics 1
4.2 competence- based	Analysis, vectors, matrices, wave equation

5. Requisites (if applicable)

5.1 for running the	Possibility to use video projector
course	
5.2 for running of the	Specialized laboratory from the Physics Department. Students must
applications	accomplish all the experiments.

6. Specific competences

Professional	Using the fundamental elements referring to devices, circuits and
	6
competences	electronic instrumentation
	Applying, in typical situations, the basic aquisition and signal
	processing methods
	Solving specific problems for wideband communication networks:
	propagation in different transmission media, circuits and equipment for
	high frequencies (microwave and optical).
Transversal	Students acquire efficient methods of learning, combine theoretical and
competences	experimental results and begin to work together in teams.
	They learn how to find basic points and bring them to light.
	Pupils discover how to defend an idea and how to sustain an argument.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Students understand modern physics and learn how to apply it in
of the course	engineering.
	They study the confirmation of theory by experiment and learn how
	to solve problems from optics, quantum mechanics, atomic physics,
	semi-conductor physics.
4.2 Specific	Students study applied mathematics and physics and learn how to
objectives	solve various problems from science and engineering.
	They apply models in simple situations and initiate scientific
	research.

8. Content

8.1 Lectures	Teaching techniques	Remarks
		(No. of hours)
Equation of electromagnetic waves		1
Characteristics of electromagnetic waves,	Presentation on the	2
polarization	black-board, worked	
Reflection and refraction	examples, questions,	3
Interference, diffraction. Applications.	discussions, slide	4
Experimental foundation of quantum physics.	presentations.	4
Characteristics of quantum objects.		
Principles of quantum mechanics. Schrödinger		4
equation.		
Simple applications of quantum laws.		2
One-dimensional applications: potential well,		5
potential barrier, tunnel effect, quantum harmonic		
oscillator. Applications.	Presentation on the	
Hydrogen atom. Atoms in magnetic fields.	black-board, worked	5

Electronic spin. Introduction to atomic	examples, questions,	
spectroscopy.	discussions, slide	
Identical micro-particles. Classical and quantum	presentations.	5
statistics. Bose-Einstein condensation. Statistics of	presentations.	5
carriers in semi-conductors.		
Emission and absorption of radiation.	-	2
Initiation in laser physics.	-	2
Initiation in nuclear physics.	-	3
References:		5
http://www.physics.pub.ro/Cursuri/Electronica I G	(English) 2017/	
1 A. Lupaşcu, <u>http://www.physics.pub.ro/Cursuri/A</u>		
Physics II ETTI 2016-2017/	lexalieru_Lupaseu	
2. Max Born, Fizica Atomică, Editura Științifică, Bu	icuresti 1973	
3. Adrese de pe pe internet <u>http://hyperphysics.phy-</u>		nedia org/wiki/
4. Halliday & Resnick, Fundamentals of Physics, 8-		
5. I. E. Irodov, Problems in General Physics, Mir Pu	•	cu , 2000
8.2 Practical applications	Teaching techniques	Remarks
		(No. of hours)
Measurement of the electron specific charge by the		2
magnetron method.		_
Experimental determination of Rydberg's constant.	Experiments made by	2
Experimental determination of Planck's constant.	small groups of students	2
Poisson and Gaussian statistics.		2
Electron diffraction (Debye – Scherrer experiment).	(6 experiments from the	2
Heisenberg's uncertainty principle experiment.	list)	2
Measurement of the current – voltage characteristics of		2
a tunnel diode.		
Bibliography:		
-		
1. Presentation of experiments from the Physics Lab	ooratory.	

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

The course Physics 2 is a fundamental topic having an important role in the creation of the attitude of a future researcher-engineer. Lectures facilitate the passage from high-school to university subjects.

Physics creates a link between mathematical and physics models and methods applied to engineering.

One begins to put the foundations of matters such as semi-conductor physics, microwaves, lasers and opto-electronics.

Students begin preparation for scientific research during master years.

They are initiated in several modern physics theories: quantum mechanics and its applications.

During the course pupils do experiments, measure physical quantities, compute errors and give final results.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation methods	10.3 Weight in		
	criteria		the final mark		
10.4 Lectures	- knowledge of	- homework given during	70%		
	basic theoretical	lectures			
	notions	- partial examination	(30% +		
	- knowledge to	- final examination	40%)		
	apply theory to				
	specific problems				
10.5 Practical applications	- experimental	- involvement during classes	30%		
(laboratory)	skills	- final colloquium			
	- knowledge of				
	the theory and of				
	the measurement				
	methods				
10.6 Minimal performance s	standard				
- knowledge of basic quantities and laws for the submitted chapters of Physics					
- solving of simple problems					
- understanding problems involved in physics experiments					

Date

Lecturer

Instructors for practical activities

25.09.2017.

Prof. Dr. Ing. Alexandru Lupaşcu) nu

Ş. L. Dr. Ana-Maria Popovici

opor

Ş. L. Dr. Ioana Ivaşcu Ali Ivascu

Director of Department,

Prof. Dr. Gheorghe Căta-Danil

26.09.2017.

Date of department approval