Politehnica University of Bucharest Faculty of Electronics, Telecommunications and Information Technology

COURSE DESCRIPTION

1. Program identification information

1.1 Higher education institution	University Politehnica of Bucharest
1.2 Faculty	The Faculty of Electronics, Telecommunications and
	Information Technology
1.3 Department	Department of Applied Electronics and Information
	Engineering
1.4 Domain of studies	Electronics and Telecommunications Engineering
1.5 Cycle of studies	Licence
1.6 Program of studies/Qualification	Applied Electronics

2. Course identification information

2.1 Name of	2.1 Name of the course M			Mathematical Analysis 2			
2.2 Lecturer Dr. Petrescu-M			etrescu-Nita Alina Claudia				
2.3 Instructor for practical activities			Dr. Petrescu-Nita Alina Claudia				
2.4 Year	Ι	2.5	II	2.6	Exam	2.7	compulsory
of studies	of studies Semester		Evaluation		Course		
				type		choice	
						type	

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of which		3.2 course	3	3.3 practical activities	2
3.4 Total hours in the curricula, out of which		3.5 course	42	3.6 practical activities	28
Distribution of time		•	•		hours
Study according to the manual, course support, bibliography and hand notes					34
Supplemental documentation (library, electronic access resources, in the field, etc)					6
Preparation for practical activities, homeworks, essays, portfolios, etc.					20
Tutoring					0
Examinations					3
Other activities					0
3.7 Total hours of individual study 60					
3.9 Total hours per semester 130					

3. 10 Number of ECTS credit points	5
------------------------------------	---

4. Prerequisites (if applicable)

4.1 curricular	-	Passing Mathematical Analysis I and Algebra and Geometry Courses
4.2 competence-based	-	General knowledge of derivatives, integral calculus and calculus with complex numbers

5. Requisites (if applicable)

5.1 for running the course	
5.2 for running of the applications	

6. Specific competences

Professional competences	 recognizing and solving classical differential equations methods for solving linear differential equations and systems with constant coefficients classification of a partial second-order equations complex integral using residue theorem applications of the Fourier, Laplace and Z transform
Transversal competences	

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Fundamental discipline indispensable to any specialized approach. The
of the course	following basic notions are presented: theory of differential equations,
	partial second order-equations and fundamental notions of complex
	analysis. Moreover, the properties of Fourier, Laplace and Z transforms
	with applications are discussed.
4.2 Specific	Generally the types of exercises and problems deal with the chapters of
objectives	the courses. The difficult theoretical questions are disccused as well. For
-	some problems the software MATHEMATICA or MAPLE are used.

8. Content

8.1 Lectures	Teaching techniques	Remarks
Elementary differential		3
equations	- lectures at the	

	blackboard	
	- utilization of	
	MATHEMATICA O	
		2
Cauchy problem. Existence		3
Differential systems of first		
order		
Linear differential systems:		3
fundamental matrix		5
Linear high order differential		3
equation. Euler's equation		5
Elementary differential		3
equations		
Cauchy problem. Existence		3
and uniqueness theorem.		
Differential systems of first		
order.		
Partial first order equations		3
Partial second-order		3
equations. Classification		
Hyperbolic and parabolic		3
secon-order equations.		
Dirichlet's problem		
Holomorphic functions.		3
Taylor's and Laurent's series.		
Cauchy' theorems and residue		3
theorem.		2
Applications for computation		3
ol complex integrals		
Z transform		3
E-mailsform: properties		3
Laplace's transform:		3
applications		5
The definition of some special		3
	•	.,

Bibliography(texts elaborated by the membres of Department of Mathematical Methods and Models)

1. Ana Nita si Alina Nita *Probleme de ecuații diferențiale*, Editura Printech București 2005 2. Alina Nita, Luminita Costache, Raluca Dumitrache-*Matematici speciale. Notiuni teoretice.Aplicatii* Editura Printech, Bucuresti, 2007.

3. Alina Petrescu-Nita - Analiza matematica II, Editura Printech 2014

4. Costache, T.-L.; Oprisan, Gh. *Transformari integrale*, Printech, Bucuresti 2004
5. Oprisan, Gh.; Georgescu, C. *Matematici avansate – M3*, Printech, Bucuresti, 2008
6. Cristina Bercia, Romeo Bercia - *Matematici speciale*. *Teorie si aplicatii*, Editura Printech, Bucuresti, 2010

8.1 Practical activities	Teaching techniques	Remarks
Elementary differential		2
equations		
Cauchy problem. Existence		2
and uniqueness theorem.		
Differential systems of first		
order.		
Linear differential systems;		2
fundamental matrix		
Linear high order differential		2
equation. Euler's equation		
Elementary differential		2
equations		
Cauchy problem. Existence		2
and uniqueness theorem.		
Differential systems of first		
order.		
Partial first order equations		2
Partial second-order		2
equations. Classification		
Hyperbolic and parabolic		2
secon-order equations.		
Dirichlet's problem		
Holomorphic functions.		2
Taylor's and Laurent's series.		
Cauchy' theorems and residue		2
theorem.		
Applications for computation		2
of		
complex integrals		
Z-transform		2
Fourier' transform; properties		2
Laplace's transform;		2
applications		
The definition of some special		2
functions		

1. Bibliography (texts elaborated by the membres of Department of Mathematical Methods and Models)

1. Ana Nita si Alina Nita *Probleme de ecuații diferențiale*, Editura Printech București 2005 2. Alina Nita, Luminita Costache, Raluca Dumitrache-*Matematici speciale. Notiuni teoretice.Aplicatii* Editura Printech, Bucuresti, 2007.

3. Alina Petrescu-Nita - Analiza matematica II, Editura Printech 2014

4. Costache, T.-L.; Oprisan, Gh. Transformari integrale, Printech, Bucuresti 2004

5. Oprisan, Gh.; Georgescu, C. Matematici avansate – M3, Printech, Bucuresti, 2008

6. Cristina Bercia, Romeo Bercia - Matematici speciale. Teorie si aplicatii, Editura Printech, Bucuresti, 2010

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

Fundamental discipline indispensable to any specialized approach.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation methods	10.3 Weight in the final mark
10.4 Lectures	-Knowledge of basic theoretical notions -the ability of applying theoretical notions in problems	-a test in the middle of the semester (30%) -final exam (50%)	80%
10.5 Practical applications	 questions about basic notions and results teached in lectures the ability of student to apply theoretical notions in problems 	-a test (10%) -verification of the tasks (10%)	20%
10.6 Minimal performa	nce standard		

-solving a first order differential equation and a secon order linear differential non-homogenous equation -calculus of a residue of a function in a singular point and applying residue theorem -determination of Laplace transformation of an original function

Date	Lecturer	Instruc	ctor for practical activities
14.11.2015	Dr. Petrescu-Nita Alina C	laudia	Dr. Petrescu-Nita Alina Claudia
Date of department appro	oval	Director of	f Department,

.....

Director of Department,

.....