COURSE DESCRIPTION

	1. 1 ogram rachameation mormation			
1.1 Higher education institution	POLITEHNICA University of Bucharest			
1.2 Faculty	Faculty of Electronics, Telecommunications and			
	Information Technology			
1.3 Department	Telecommunications			
1.4 Domain of studies	Electronic Engineering, Telecommunications and			
	Informational Technologies			
1.5 Cycle of studies	License (engineering)			
1.6 Program of studies/Qualification	Technologies and Systems of Telecommunications			
	(TSTeng)			

1. Program identification information

2. Course identification information

2.1 Name of	of the	course		Algebra and Geometry			
2.2 Lecturer		Assoc. Prof. Irina Meghea					
2.3 Instructor for practical activities A			Assoc. Prof. Irina Meghea				
2.4 Year	Ι	2.5 Semester	Ι	2.6 Evaluation Exam 2.7 Course Comput			
of studies				type choice type			

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week, out of	4	3.2 course	3	3.3 practical activities	1
which					
3.4 Total hours in the curricula, out of	56	3.5 course	42	3.6 practical activities	14
which					
Distribution of time					hours
Study according to the manual, course support, bibliography and hand notes				50	
Supplemental documentation (library, electronic access resources, in the field, etc)				6	
Preparation for practical activities, home works, essays, portfolios, etc.				15	
Tutoring					0
Examinations				3	
Other activities				0	
3.7 Total hours of individual study	74				
3.9 Total hours per semester	130)			

1	
3. 10 Number of ECTS credit points	4

4. Prerequisites (if applicable)

4.1 curricular	Introductory notions on linear algebra: matrices, determinants, systems		
	of linear equations; algebraic structures: groups, rings, fields		
4.2 competence-based	No appropriate		
5. Requisites (if applicable)			
5.1 for running the	No appropriate		
course			
5.2 for running of the	No appropriate		
applications			

6. Specific competences

Professional	In accordance with C1 and C2.
competences	Accumulation of knowledge on basic linear algebra, analytic geometry
	and differential geometry need to the technical higher education,
	particularly notions need to provide a deeper understanding of specialty
	disciplines.
Transversal	In accordance with CT1.
competences	Development skills to approach and solve any scientific problems by
	widening horizon and reasoning capacity conferred by mathematics on
	an early development stage of the student.

7. Course objectives (as implied by the grid of specific competences)

7.1 General objective	Fundamental discipline need in approaching any specialty approaching.
of the course	Presentation of main chapters of linear algebra, analytic geometry,
	differential geometry with focus on further specialization.
7.2 Specific	Ability to use the abstract reasoning and of calculus techniques with
objectives	accent on its correct finalization, not only to have an idea about it, since
	an engineer should to solve a problem until the end.

8. Content

8.1 Lectures	Teaching techniques	Remarks
Matrices, determinants,	Teaching is based on	2 hours
systems of linear equations	presentations at the	
Algebraic structures. Elements	blackboard, in a permanent	2 hours
of the theory of finite groups	discussion with the students in	
Vector spaces. Linear	order to involve them in	8 hours
dependence and linear	clarification of notions and	
independence	applications.	
Eigenvalues, eigenvectors.	Lecture materials are the notes	4 hours
Diagonalization. Localization	and the presentations and three	
of the eigenvalues	books of theory and solved	
Linear maps and associated	and proposed problems.	3 hours
matrices. Special types of		
linear operators		
Matrix analysis. Jordan		2 hours
matrix. Jordan basis		
Normed spaces. Hilbert spaces.		3 hours
Matricial norm. Gram -		
Schmidt method		
Bilinear forms. Quadratic		4 hours
forms. Canonical form.		
Classification		
Vector products. Mixed		3 hours
products. Straight line and		
plane in space		

Conics and quadrics.	3 hours
Geometrical representation	
Differential geometry of	4 hours
curves	
Differential geometry of	2 hours
surfaces	
Elements of linear	2 hours
programming	

Bibliography:

- C. Meghea, I. Meghea, "Treatise of differential calculus and integral calculus for mathematicians, physicists, chemists and engineers in ten volumes", Old City Publishing, Philadelphia, Éditions des Archives Contemporaines, Paris, vol. 1-3 – 2013, vol. 4-8 – 2014, vol. 9-10 – 2015;
- C. Meghea, I. Meghea, "Tratat de calcul diferențial pentru invățământul politehnic", Vol. I – Editura Tehnică, București, 1998, Vol. II – Editura Tehnică, București, 2000, Vol. III – Printech 2002
- 3. **I. Meghea**, "*Lessons of algebra and geometry*", Editura Politehnica Press, București, 2017
- 4. I. Meghea, "Lecții de Algebră și Geometrie", Editura Politehnica Press, București, 2012
- 5. http://electronica.curs.pub.ro/2016/mod/forum/view.php?f=38

8.2 Practical applications	Tasahing tashniguas	Domoriza
8.2 Practical applications	Teaching techniques	Remarks
Matrices, determinants,	Propose problems, explain the	2 hours
systems of linear equations.	calculus methods and involve	
Algebraic structures	the students in discussions and	
Vector spaces. Linear	the solutions of the exercises	2 hours
dependence and independence	by work to the blackboard.	
Eigenvalues. Eigenvectors.	Give homework with solved	2 hours
Diagonalization	and proposed problems.	
Linear maps and associated	Learning materials: three	2 hours
matrices. Euclidean vector	books which present and	
spaces. Gram - Schmidt	explain the theory, containing	
method	solved and proposed exercises.	
Bilinear forms. Quadratic		2 hours
forms. Conics and quadrics		
Analytic geometry in plane		2 hours
and in space		
Differential geometry of		2 hours
curves and surfaces		

Bibliography

1. I. Meghea, "Lecții de Algebră și Geometrie", Editura Politehnica Press, București, 2012

2. **I. Meghea**, "*Lessons of Algebra and Geometry. Theory and applications*", Politehnica Press, București, 2017

3. <u>http://electronica.curs.pub.ro/2016/mod/forum/view.php?f=38</u>

9. Bridging the course content with the expectations of the epistemic community representatives, professional associations and employers representatives for the domain of the program

As a result of modern evolution in sciences and techniques, in natural sciences and generally in any modeling of real phenomena, mathematics is compulsory. Contribution of this discipline should be considered as fundamental and have to be highlighted the way how the specialty study is necessary and how it complies with specific elements of training in this faculty.

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Weight in the	
	criteria	methods	final mark	
10.4 Lectures	- to know the	- partial exam (weight	80%	
	fundamental	20%) established from		
	theoretical notions	the beginning of the		
	- the capacity to apply	semester		
	the theoretical	- final exam (written),		
	knowledge in some	weight 50%		
	applications and the	The subjects to both		
	possibility to solve	verifications cover all		
	problems	the matter.		
		- homework (weigh		
		10%)		
10.5 Practical	Starting from a	- a verification test	20%	
applications	summary of the	(10%)		
	notions and basic	- a permanent		
	results, apply them in	quantification of the		
	exercises and solve	student activity at		
	problems	practical applications		
		(10%)		
10.6 Minimal performance standard: To obtain 50 points from the total of 100 possible points.				

10. Evaluation

Date

Lecturer

Instructor for practical activities

25.09.2017

Lect. Irina Meghea, PhD

Meghea

Lect. Irina Meghea, PhD Meghea

Date of department approval

Director of Department

26.09.2017

Prof. Mircea Olteanu, PhD

holtco