
Programming in C

Prof. Gustavo Alonso
Computer Science Department
ETH Zürich
alonso@inf.ethz.ch
http://www.inf.ethz.ch/department/IS/iks/

©Gustavo Alonso, ETH Zürich. Programming in C 2

Programming in C
! A brief history of C
! C as a programming language
! C Programming

"main function
"constants, variables, data types
"operators, control structures
" functions
"data structures
"pointer arithmetic
"structures
"dynamic memory allocation

©Gustavo Alonso, ETH Zürich. Programming in C 3

A brief history of C
! Programming languages are used to

specify, design, and build software
systems.

! Programming languages evolve with the
systems they are used to construct. C is a
good example of how this process takes
place.

! UNIX was developed at around 1969. It
first version was programmed in assembler
and run on a DEC PDP-7.

! The second version was ported to a PDP-11
in 1971 and it was a great success:
" 16 KB for the system
"8 KB for user programs
"disk of 521 KB
" limit of 64 KB per file

! While writing a FORTRAN compiler for
UNIX, a new programming language was
developed: B

! B was interpreted (like Java) and,
therefore, slow. To solve the performance
problems of B, a new language was
created: C
"allowed generation of machine code

(compilation)
"declaration of data types
"definition of data structures

! In 1973 UNIX was rewritten in C
something that was never done before
"C is much easier to handle than

assembler but
" first C version of UNIX was 20 to 40

% larger and slower than assembler
version

©Gustavo Alonso, ETH Zürich. Programming in C 4

C as a programming language
! C has been standardized (ANSI C) and

spawned new languages (C++,
Stroustrup, 1986) that improve C

! The basic characteristics of C are:
"small in size
" loose typing (lots of freedom, error

prone)
"structured (extensive use of

functions)
"designed for systems programming

(i.e., low level programming of the
type needed to implement an operating
system)

"C is higher level than assembler but
still close to the hardware and allows
direct manipulation of many system
aspects: pointers, memory allocation,
bitwise manipulation ...

! As we will see when we study assembler, C
is not very far from the assembler language
but it provides higher level language
constructs (functions, data structures)
that facilitate programming without loosing
too much performance

! Being a low level language, C gives a lot of
freedom to the programmer:
" it has the advantage that good

programmers can implement very
efficient programs in a compact
manner

" it has the disadvantage that most of us
are not good programmers and the
freedom C grants is usually translated
in error prone, messy code

©Gustavo Alonso, ETH Zürich. Programming in C 5

This is C

#include <stdio.h>

main(t,_,a)
char *a;
{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a
)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,
t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\
,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!/\
+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){n\
l]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == '/')+t,_,a\
+1):0<t?main (2, 2 , "%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc \
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

Winner of the international
Obfuscated C Code Contest

http://reality.sgi.com/csp/iocc

©Gustavo Alonso, ETH Zürich. Programming in C 6

The C compilation model
! The Preprocessor accepts source code as

input and
" removes comments
"extends the code according to the

preprocessor directives included in the
source code (lines starting with #)

! The Compiler takes the output of the
preprocessor and produces assembly code

! The Assembler takes the assembly code
and produces machine code (or object
code)

! The Linker takes the object code, joins it
with other pieces of object code and
libraries and produces code that can be
executed

preprocessor

compiler

assembler

linker

source code

libraries

assembly code

object
code

executable code

©Gustavo Alonso, ETH Zürich. Programming in C 7

Structure of a C program
! A C program contains the following

elements:
"Preprocessor Commands
"Type definitions
" Function prototypes -- declarations of

function types and arguments.
"Variables
"Functions

! All programs must contain a single main()
function. All function, including main,
have the following format:

type function_name (parameters) {
local variables
C Statements

}

#include <stdio.h>
#define TIMES 10 /* upper bound */

double myfunction(float);
/* Function prototype - Declaration */

main() {
double wert;
double pi = 3.14;

printf(“Multiply by 10\n”);

wert = myfunction(pi);

printf(“%d * %f = %f\n”,
TIMES, pi, wert);

}

double myfunction(double zahl){
int i;
double count = 0;

count = TIMES * zahl;

return count;
}

©Gustavo Alonso, ETH Zürich. Programming in C 8

Data types
! C has the following basic data types

! The sizes of the data types are not standardized (depend on the implementation)
! The type void is used to indicate functions that return no value or null pointers
! With #define, one can introduce symbolic constants

#define LIMIT 100

C Type Size (in bytes) Lower bound Upper bound Use
char 1 - - characters
unsigned char 1 0 255 small numbers
short int 2 -32768 +32767 integers
unsigned short int 2 0 65536 positive int
(long) int 4 large int
float 4 real numbers
double 8 large reals
void 0 - - no return value

312− 12 31 −+
38102.3 ±⋅− 38102.3 ±⋅+

308107.1 ±⋅− 308107.1 ±⋅+

©Gustavo Alonso, ETH Zürich. Programming in C 9

Variables and constants
CONSTANTS

! A constant specifies a value that cannot be
modified by the program

! Special constants for use with strings:
\n new line
\t tabulator
\r carriage return
\b backspace
\" escape double quote
\0 end string

! Symbols defined through the preprocessor:

#define ESC '\033’ /* ASCII
escape */

VARIABLES
! A variable specifies an area of memory that

contains a value of a given type that can be
modified by the program
short x;
long y;
unsigned a,b;
long double lb;
unsigned short z;

! sizeof() is a function that returns the size
of a given variable in bytes (the size
depends on the type of the variable

! Variables should be initialized before they
are used (e.g., in the declaration)
otherwise the variables contain a random
value

©Gustavo Alonso, ETH Zürich. Programming in C 10

Type conversions (casts)
! In C, the type of a value can change during the run time of a program, this is known as type

conversion or type cast
! The change can be explicit (the programmer does it) �

var_new_type = (new_type) var_old_type

int a;
float x = (float) a;

! or implicit (the compiler takes care of it in order to perform operations among variables of
different types):
"char and short can be converted to int
" float can be converted to double
" in an expression, if an argument is double, all arguments are cast to double
" in an expression, if an argument is long, all arguments are cast to long
" in an expression, if an argument is unsigned, all arguments are cast to unsigned

int a = 3;
float b = 5.0;
float c = a + b; /* a is transformed into double */

©Gustavo Alonso, ETH Zürich. Programming in C 11

Scope
! The scope determines where within a

program a particular entity is known and
can be accessed

! The scope of a variable is the part of a
program where the variable can be
manipulated. The scope can be global or
local

! Global variables are typically declared
before the main function. They can be
accessed from anywhere in the program.
Try to avoid global variables (a matter of
programming style)

! Local variables are valid and visible within
a particular block (a block is a set of C
statements enclosed within brackets {
�}). Once the control flow is outside
the block, the variable no longer exists

! Local variables are created (space in
memory is allocated for them) when the
control flow in the program reaches the
block where they are declared (e.g., a
function) and are destroyed (deallocated
from memory) when the control flow leaves
the block

! The creation and destruction of variables
can be controlled:
"extern: the variable is defined in a

different module
"static: for local variables: makes them

last the entire program, for global
variables: restricts the scope to the
current module

" register: try to use a CPU register for
the variable

"auto: default for local variables

©Gustavo Alonso, ETH Zürich. Programming in C 12

Scope (example 1)

int global_variable;

int main () {
int local_variable;

global_variable = 1;
local_variable = 2;

{
int very_local_variable;
very_local_variable = 3;
}

}

©Gustavo Alonso, ETH Zürich. Programming in C 13

Expressions and priority
! +, -, *, /, % are the basic arithmetic

operators
! Addition

x = 3 + 4;

! Subtraction
x = 10 - 3;

! Multiplikation
x = 3 * 4;

! Division
x = 73 / 8;
/* x=9, if int x */
x = 73.0 / 8.0;
/*x=9.125,if float x */

! Modulo
x = 73 % 8;
/* x=1, the reminder of the

division */

! Multiplication operators (*, /, %) have a
higher priority than the additive operators
(+, -). When evaluating an expression,
operators with a higher priority are
evaluated first:

x = 2 + 3 / 2 + 3;
/* x = 2 + 1 + 3 */

x = (2 + 3) / (2 + 3);
/* x = (5 / 5) = 1 */

x = 4*(1/2); /* x = 0 */
x = 4*1/2; /* x = 2 */

©Gustavo Alonso, ETH Zürich. Programming in C 14

Short-hand operators
! C allows for a short hand notation that introduces side effects. This is done through the

prefix- or postfix operators ++, --
! If ++ or -- are used as prefixes, the variable is modified before it is used in the evaluation

of an expression:

a = 3;

b = ++a + 3; /* b = 4 + 3 = 7 and a = 4 side effect */

! If ++ or -- are used as postfixes, the variable is first used to evaluate the expression and
then modified.

a = 3;
b = a++ + 3; /* b = 3 + 3 = 6 and a = 4 */

! Almost all operators can be combined with =
a += b; /* a = a + b */
a *= b; /* a = a * b */

©Gustavo Alonso, ETH Zürich. Programming in C 15

Bit-Operators
! The Bit-Operators & (AND), ^(Exclusive-OR), and | (Inclusive-OR) manipulate bits

according to standard two valued logic

! With & one can set bits to 0.
! With ^one can reverse the valu of bits (0 becomes 1 and 1 becomes 0)
! With | one can set bits to 1.

Bit1 Bit2 Bit1 & Bit2 Bit1^Bit2 Bit1|Bit2

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 0 1

©Gustavo Alonso, ETH Zürich. Programming in C 16

Shift Operators
! << and >> are used to manipulate the position of the bits in a byte or a word
! With a >> b the bits in the variable a are displaced b positions to the right (the new bits

are filled with 0).

! With a << b the bits in the variable a are displaced b positions to the left (the new bits
are filled with 0).

a a >> 3

a << 3a

1 0 1 1 1 0 1 0

1 1 0 1 0 0 0 0

0 0 0 1 0 1 1 1

1 0 1 1 1 0 1 0

MSB LSB
ba 2/ =

ba 2* =

©Gustavo Alonso, ETH Zürich. Programming in C 17

Comparison and logical operators
! The comparison operators return a 1 or a 0 depending on the result of the comparison. The

comparison operators in C are

"< (smaller than)
"> (greater than)
"<= (smaller or equal than)
">= (greater or equal than)
"== (equal than)
" != (not equal than)

! && and || are the logical AND and OR operators
(a != b) && (c > d)
(a < b) || (c > d)

©Gustavo Alonso, ETH Zürich. Programming in C 18

if statement
! The if � then � else statement can be

used with or without the else. The two
forms are:

if (expression)
statement1

if (expression)
statement1

else
statement2

! In both cases, when the expression is true,
then statement1 is executed. If the
expression is false, then, in the first case,
statement1 is skipped (not executed), and,
in the second case, statement2 after the
else is executed.

true

Statement 1 Statement 2

false
expression

if (a >= 3) a = a - 3;
if (a == 3) a = a * 3;
else a = a * 5;

if (a >= 3) { a = a - 3;
if (a == 3) a = a * 3;}
else a = a * 5;

©Gustavo Alonso, ETH Zürich. Programming in C 19

switch statement (1)
! The switch statement is used to

conditionally perform statements based on
an integer expression (selector)
switch (selector) {
case int-value1 : statement1; break;
case int-value2 : statement2; break;
case int-value3 : statement3; break;
default: statement4;
}

! The exact behavior of the switch statement
is controlled by the break and default
commands
"break continues execution after the

switch statement
"default is executed if no other match

is found

false

trueint�value 1
= selector

selector

Statement 1

int�value 2
= selector

true
Statement 2

false

int�value 2
= selector

true
Statement 3

false

Statement 4

Switch using break

©Gustavo Alonso, ETH Zürich. Programming in C 20

Switch statement (2)

switch (selector) {
case int-value1 : statement1;
case int-value2 : statement2;
case int-value3 : statement3;
default: statement4;

}

/* fall through */

false

trueint�value 1
= selector

selector

Statement 1

int�value 2
= selector

true
Statement 2

false

int�value 2
= selector

true
Statement 3

false

Statement 4

Switch without break

©Gustavo Alonso, ETH Zürich. Programming in C 21

Switch (example)
char a = �A�;
switch (a) {
case �A�: x *= x; break;
case �B�: x /= x; break;
default: x += 5;
}

! Once the case �A� is found, x *= x is
executed and then we continue after the
switch statement. in all cases, only one
case will be executed (either �A� or �B� or
�default�)

! Note that a is of type char. It does not
matter, char is treated as an integer using
type conversion

a = �A�;
switch (a) {

case �A�: x *= x;
case �B�: x /= x;
default: x += 5;
}

! Once case �A� is found, x *= x is
executed. However, there is no break. This
means we continue executing statements
while ignoring the cases (the check is not
performed anymore). Thus, the following
statements will also be executed

x /= x;

x += 5;

©Gustavo Alonso, ETH Zürich. Programming in C 22

for statement
! The for statement provides a compact way

to iterate over a range of values.
for (initialization; termination; increment) {

statement

}

! All elements in the for loop are optional:
for (; ;);

! break can be used to interrupt the loop
without waiting for the termination
condition to evaluate to true

! continue can be used to skip execution of
the body of the loop and re-evaluate the
termination condition

statement

termination

initialization

true
increment

false

for (int x =0; x < 100; x = x + 3){
if (x == 27) continue;
else printf(�%d�,x);
}

©Gustavo Alonso, ETH Zürich. Programming in C 23

while statement
! The while statement is used to continually

execute a block of statements while a
condition remains true.

while (expression) {
statement

}

! As before, break and continue can be used
to terminate the loop or to finish an
iteration and go back to the evaluation of
the expression

! for and while are equivalent (can you do
it? write a for loop using the while
statement and vice versa)

expression statement
true

false

main() {
char t;
while((t = getchar()) != �!�) {

if (t >= �A' && t<= �Z')
printf("%c\n", (char)(t+�a'-�A'));

else
printf("%c\n", (char)t);

}
}

©Gustavo Alonso, ETH Zürich. Programming in C 24

Do-while statement
! The do-while is similar to the while

statement except that the loop is always
executed once and the condition is checked
at the end of each iteration.
do {

statement
} while (expression)

! break and continue have the same effect as
before

expression

statement

true

false

©Gustavo Alonso, ETH Zürich. Programming in C 25

Odd ends
exit ()

! exit() terminates the execution of the
program passing an integer error code. e.g.
0 -> no error, 1 -> not found, 99 ->
crash

! exit() is a very primitive way to terminate
a program and one that leaves only very
limited chance to deal with failures. More
modern programming languages use
exceptions and exception propagation
mechanisms to indicate the occurrence of
an error without having to terminate the
program

if (!(buf = AllocMem (BufSize);)) {
printf(�kein Speicher vorhanden");
exit(NO_MEM);

}

Goto
! C was written as a language that is one

step above assembly language. This can be
seen, for instance, on the existence of a
goto statement

! Do not use goto when programming. There
are very good reasons to avoid it:
"Style: avoid spaghetti code
"Use of stack frames

©Gustavo Alonso, ETH Zürich. Programming in C 26

Arrays
! An array is a finite set of variables of the

same basic type
! Instead of giving each variable a name, we

use enumeration and group all of them in
an array

! The enumeration of elements within an
array always starts with 0. If the array has
N elements, the last element is in position
N-1

! The C compiler does not check the array
boundaries
" this is a very typical error that it is

very difficult to find (usually happens
inside loops that traverse the array)

"always check the array boundaries
before accessing a variable in an array

#include <stdio.h>
float data[5]; /* data to average and total */
float total; /* the total of the data items */
float average; /* average of the items */

main() {
data[0] = 34.0;
data[1] = 27.0;
data[2] = 45.0;
data[3] = 82.0;
data[4] = 22.0;

total = data[0] + data[1] + data[2] + data[3] +
data[4];

average = total / 5.0;
printf("Total %f Average %f\n", total, average);
return (0);

}

©Gustavo Alonso, ETH Zürich. Programming in C 27

Multi-dimensional arrays
int a[3][3]

1 2 3 4 5 6 7 8 9

a[0][0] a[0][1] a[0][2] a[1][0]a[1][1] a[1][2]a[2][0] a[2][1] a[2][2]

int a = 1;
for (i=0; i < 3; i++)

for (j=0; j < 3; j++)
matrix[i][j] = a++;

1 2 3 4 5 6 7 8 9

int a = 1;
for (i=0; i < 3; i++)

for (j=0; j < 3; j++)
matrix[j][i] = a++;

1 4 7 2 5 8 3 6 9

MEMORY

©Gustavo Alonso, ETH Zürich. Programming in C 28

Array traversals (examples)

int array[5][5];
for (int i=0; i < 5; i++)

for (int j=0; j < 5; j++)
array[i][j] = 1;

int array[5][5];
for (int i=0; i < 5; i++)

for (int j=0; j < i; j++)
array[i][j] = 1;

0 1 2 3 4

0

1

2

3

4

i

j
inner loop traversal

ou
te

r
lo

op
 tr

av
er

sa
l 0 1 2 3 4

0

1

2
3

4

i

j
inner loop traversal

ou
te

r
lo

op
 tr

av
er

sa
l

©Gustavo Alonso, ETH Zürich. Programming in C 29

More on arrays
! Arrays can be initialized when they are

defined:

/* a[0] = 3, a[1] = 7, a[2] = 9 */
int a[3] = {3, 7, 9};

/* liste[0]=0.0, �, liste[99]=0.0 */
float list[100] = {};

int a[3][3] = {
{ 1, 2, 3}
{ 4, 5, 6}
{ 7, 8, 9}

};

! Strings are arrays of characters terminated
with the null character \0

char str[6] = {�h�,�a�,�l�,�l�,�o�,�\0�}

char str[6] = "hello";

! For string manipulation, however, use the
string.h library

! In C, arrays are just a syntactic
convenience to make programming easier.
Arrays are, for the compiler, the same as
pointers (the array name is a pointer to
the beginning of the array)

1 2 3 4 5 6 7 8 9

©Gustavo Alonso, ETH Zürich. Programming in C 30

Pointers
! A variable has a name, an address, a type,

and a value:
" the name identifies the variable to the

programmer
" the address specifies where in main

memory the variable is located (i.e.,
the beginning of the memory region
reserved for this variable)

" the type specifies how to interpret the
data stored in main memory and how
long the variable is

" the value is the actual data stored in
the variable after if has been
interpreted according to a given type

! Pointers are language constructs that allow
programmers to directly manipulate the
address of variables

! Pointers are used with the * and &
operators:

int* px; /*px = pointer to an integer*/

int x; /*x is an integer */

px = &x; /* px gets the address of x */
/* or px points to x */

x = *px; /* x gets the contents of */
/* whatever x points to */

©Gustavo Alonso, ETH Zürich. Programming in C 31

Pointers (I)

int nummer = 3;
int* nummer_ptr = NULL;

nummer_ptr

int*

0
nummer

int

3

nummer_ptr = &nummer;

nummer_ptr

int*

nummer

int

3

nummer = 5;

nummer_ptr

int*

nummer

int

5

©Gustavo Alonso, ETH Zürich. Programming in C 32

Pointers (II)

nummer = 8; / CAREFUL, 8 is not a pointer but an integer */

int x = *nummer_ptr;

nummer_ptr

int*

nummer

int

7

nummer_ptr

int*

nummer

int

7
*nummer_ptr = 7;

x

int

7

©Gustavo Alonso, ETH Zürich. Programming in C 33

Pointers (III)

int* y_ptr = nummer_ptr;

nummer_ptr

int*

nummer

int

7
x

int

7

y_ptr

int*

*y_ptr = 6;

nummer_ptr

int*

nummer

int

6
x

int

7

y_ptr

int*

©Gustavo Alonso, ETH Zürich. Programming in C 34

Pointers (IV)

y_ptr = &x;

nummer_ptr

int*

nummer

int

6
x

int

7

y_ptr

int*

©Gustavo Alonso, ETH Zürich. Programming in C 35

Pointers (V)

int* *p_ptr_ptr;

p_ptr_ptr = &nummer_ptr;

nummer_ptr

int*

nummer

int

6
x

int

7

y_ptr

int*

p_ptr_ptr

int**

©Gustavo Alonso, ETH Zürich. Programming in C 36

Pointers (VI)

*(*p_ptr_ptr) = 5;

nummer_ptr

int*

nummer

int

5
x

int

7

y_ptr

int*

p_ptr_ptr

int**

©Gustavo Alonso, ETH Zürich. Programming in C 37

Pointers, arrays and strings
! An array is in reality a pointer:

int a[10], y;
int* px;
px = a; /* px points to a[0] */
px++; /* px points to a[1] */
px=&a[4]; /*px points to a[4] */
y = *(px+3) /*y gets the value*/

/* in a[3] */
! The pointer arithmetic in C guarantees that

if a pointer is incremented or decremented,
the pointer will vary according to its type.
For instance, if px points to an array,
px++ will always yield the next element
independently of what is the type stored in
the array

! Strings can be manipulated through
pointers:
char* message;
message = �This is a string�;

! message is a pointer that now points to the
first character in the string �This is a
string�

! Again, use the string.h for string
manipulation rather than doing it directly
(you will avoid many errors)

©Gustavo Alonso, ETH Zürich. Programming in C 38

Troubles with pointers
What is printed by the following code?

#include <stdio.h>
void f(int *aa, int *bb) {

*bb = 8;
aa[1] = bb[2];
aa = bb;

}

main() {
int a[5] = { 1, 2, 3, 4, 5 }, *b;
b = a + 2;
f(a,b);
printf("%d %d %d %d %d\n",

a[0], a[1], a[2], a[3], a[4]);
}

What is printed by the following code?

#include <stdio.h>
void g(int *aa, int *bb) {

bb[2] = aa[-2];
*aa++ = 17;
*++aa = 10;

}

main() {
int blap[7] = { 1, 2, 3, 4, 5, 6, 7 };
int *c = blap + 3;
g(c,blap);
printf("%d %d %d %d %d %d %d\n",
blap[0], blap[1], blap[2], blap[3],
blap[4], blap[5], blap[6]);
}

©Gustavo Alonso, ETH Zürich. Programming in C 39

Structures
! Structures allow programmers to define

complex data types. A structure is a new
(user defined) data type:

struct Id_card {
char name[100]; /* Name */

char adresse[100]; /*Address */
short int geburtsjahr; /*Geburtsjahr*/
int telefon; /* Telefonnummer */
short int semester; /* Semester */

} ethz, uniz;

struct Id_card erasmus;

! Structures of the same type can be copied
with the operator = but they should not
be compared with ==

! Access to the elements of a structure is as
follows:
ethz.name = �Gustavo�;
ethz.telefon = 1234567;

! Pointers can also refer to structures, in
which case elements are accessed through
the ->, or * operators:
struct Id_card *pid;
pid = ðz_student;
pid->name = �Gustavo�;
pid->telefon = 1234567;
(*pid).name = �Gustavo�;
(*pid).telefon = 1234567;

! In ANSI C, structures can be passed as
arguments (by value or by reference) and
can also be the return type of a function
(this is not true in earlier versions of C)

©Gustavo Alonso, ETH Zürich. Programming in C 40

Example structures

int main () {
struct Typ_kiste {

char inhalt[50]; /* was ist in der Kiste */
int anzahl; /* wieviel davon */
float preis; /* was kostet eine Einheit */

};

float wert;
const int MAX_KISTEN = 10;
struct Typ_kiste liste_kisten[MAX_KISTEN];

/* Initialisierung … */

/* Gesammter Wert */
for (int i = 0; i < MAX_KISTEN; i++)

wert += liste_kisten[i].anzahl * liste_kisten[i].preis;
…
}

©Gustavo Alonso, ETH Zürich. Programming in C 41

struct

...

inhalt inhalt inhalt

anzahl anzahl anzahl

preis preis preis

liste_kisten[0] liste_kisten[1] liste_kisten[2]

liste_kisten[0].inhalt liste_kisten[1].inhalt liste_kisten[2].inhalt
liste_kisten[0].anzahl liste_kisten[1].anzahl liste_kisten[2].anzahl
liste_kisten[0].preis liste_kisten[1].preis liste_kisten[2].preis

char[50] char[50] char[50]

int intint

float float float

©Gustavo Alonso, ETH Zürich. Programming in C 42

Functions
! C is a modular language where the main

unit of composition is the function
! A function has the following elements:

"a return type: specifies the type of the
value returned by the function when it
terminates

"a function name: identifies the
function for the programmer

"arguments of defined types:
parameters to pass to the function,
which can be
� by value: the function gets the a

copy of the value of the
parameters but cannot modify the
actual parameters

� by reference: the function gets the
address (reference) of the
parameters and can modify them

! General syntax:

returntype function_name(def of parameters) {
localvariables
functioncode

}

! An example:

float findaverage(float a, float b) {
float average;
average=(a+b)/2;
return(average);

}

! In ANSI C functions must be declared as prototypes
before they are defined:
float findaverage(float a, float b)

©Gustavo Alonso, ETH Zürich. Programming in C 43

Examples
/* SWAP.C exchange values */
#include <stdio.h>
void swap(float *x, float *y); /* prototype */
main() {

float x, y;
printf("Please input 1st value: ");
scanf("%f", &x);
printf("Please input 2nd value: ");
scanf("%f", &y);
printf("Values BEFORE 'swap' %f, %f\n", x, y);
swap(&x, &y); /* address of x, y */
printf("Values AFTER 'swap' %f, %f\n", x, y);
return 0;

}

/* exchange values within function */
void swap(float *x, float *y) {

float t;
t = *x; /* *x is value pointed to by x */
*x = *y;
*y = t;

printf("Values WITHIN 'swap' %f, %f\n", *x, *y);
}

* FACTORIAL *\
* fact(n) = n*(n-1)*....2*1 *\

#include <stdio.h>

fact(n) {
int n;
if (n == 0) return(1);
return(n * fact(n-1));

}

main() {
int n, m;

printf("Enter a number: ");
scanf("%d", &n);
m = fact(n);
printf(�Factorial of %d is %d.\n", n, m);
exit(0);

}

©Gustavo Alonso, ETH Zürich. Programming in C 44

main() is also a function
/* program to print arguments from command line */
#include <stdio.h>

main(int argc, char **argv) {
int i;

printf("argc = %d\n\n",argc);
for (i=0;i<argc;++i)

printf("argv[%d]: %s\n",i, argv[i]);
}

! argc stands for argument count and it
contains how many arguments have been
passed in the command line when the
program is invoked

! argv is the argument vector (array) and it
contains all the arguments passed through
the command line

! argc is always at least 1 since argv[0] is
the name of the program

* append one file to the another */
#include <stdio.h>
main(int argc, char **argv) {

int c;
FILE *from, *to;
if (argc != 3) { /* Check the arguments. */

fprintf(stderr, "Usage: %s from-file to-file\n", *argv);
exit(1);

}
if ((from = fopen(argv[1], "r")) == NULL) {

perror(argv[1]); /* Open the from-file */
exit(1);

}
if ((to = fopen(argv[2], "a")) == NULL) {

perror(argv[2]); /* Open the to-file */
exit(1);

}
/* Read one file and append to the other until EOF */

while ((c = getc(from)) != EOF)
putc(c, to);

/*close the files */
fclose(from);
fclose(to);
exit(0);

}

©Gustavo Alonso, ETH Zürich. Programming in C 45

Dynamic memory allocation
! The definition of types and variables help

the compiler to understand the program we
have written

! The declaration of variables leads to the
allocation of memory for those variables.
In general, this happens automatically and
without intervention of the programmer

! C allows the programmer to allocate and
deallocate memory dynamically

! The functions used for memory allocation
are in stdlib.h

! Typical function calls are
"malloc
" free

typedef struct node {
int x,z;
struct node *next;

} NODE;

NODE *nptr;
if ((nptr =((NODE)*) malloc(sizeof(NODE)))

== NULL) {
printf("No memory - bye bye"); exit(99);

}

! malloc returns a pointer to the allocated
memory. The pointer is generic (void *)
and it is a good practice to cast the pointer
to the appropriate pointer type to avoid
errors.

! Allocated memory must be returned to the
system:
free(nptr);

©Gustavo Alonso, ETH Zürich. Programming in C 46

Example dynamic array
/* This program simply reads integers into a dynamic

array until eof. The array is expanded as needed */

#include <stdio.h>
#include <stdlib.h>
#define INIT_SIZE 8 /* Initial array size. */
main() {

int num; /* Number of integers */
int *arr; /* Array of integers. */
int arrsize; /* The size of the array of integers. */
int m; /* Index. */
int in; /* Input number. */

/* Allocate the initial space. */
arrsize = INIT_SIZE;
arr = (int*) malloc(arrsize*sizeof(int));

/* Read in the numbers. */
num = 0;
while(scanf("%d", &in) == 1) {

/* See if there's room. */
if(num >= arrsize) {

/* There's not. Get more. */
arrsize *= 2;
arr = (int*) realloc(arr, arrsize*sizeof(int));
if(arr == NULL){

fprintf(stderr, "Allocation failed %d.\n");
exit(18);

}
}

/* Store the number. */
arr[num++] = in;

}

/* Print out the numbers. */
for(m = 0; m < num; ++m)

printf("%d\n", arr[m]);
}

©Gustavo Alonso, ETH Zürich. Programming in C 47

Example string library
#include <stdio.h>
#include <string.h>

void main() {
char name1[12], name2[12], mixed[25];
char title[20];

strcpy(name1, "Rosalinda");
strcpy(name2, "Zeke");
strcpy(title, "This is the title.");

printf(" %s\n\n", title);
printf("Name 1 is %s\n", name1);
printf("Name 2 is %s\n", name2);

if(strcmp(name1, name2) > 0)
/* returns 1 if name1 > name2 */

strcpy(mixed, name1);
else

strcpy(mixed, name2);

printf("The biggest name alphabetically is %s\n", mixed);

strcpy(mixed, name1);
strcat(mixed, " ");
strcat(mixed, name2);
printf("Both names are %s\n", mixed);

}

This is the title.

Name1 is Rosalinda
Name2 is Zeke
The biggest name alphabetically is Zeke
Both names are Rosalinda Zeke

©Gustavo Alonso, ETH Zürich. Programming in C 48

References
Some material for these foils and some of the examples have been taken from the following on-

line books on C (there are many more):

! C Programming, Steve Holmes: http://www.strath.ac.uk/IT/Docs/Ccourse/
! C language tutorial: http://www.graylab.ac.uk/doc/tutorials/C/index.htm
! Programming in C , A. D. Marshall: http://www.cs.cf.ac.uk/Dave/C/CE.html

For how C was developed, read the tutorial written by Brian W. Kernighan in 1974:

! Programming in C: A Tutorial, B. W. Kernighan:
http://www.lysator.liu.se/c/bwk-tutor.html

