
ATmega16A Microcontroller

Timers

1

Timers

 Timer 0,1,2

 8 bits or 16 bits

 Clock sources:
 Internal clock,

 Internal clock with prescaler,  Internal clock with prescaler,

 External clock (timer 2),

 Special input pin Special input pin

2

Features

 The choice of timers clock frequency (prescaler)

R d / it t t t Read / write counter status

 Waveform generation using a comparison register

F dj t t PWM (P l Width M d l ti) Frequency adjustment, PWM (Pulse Width Modulation)

 Interrupt request generation at regular intervals

 Triggered by an external event (capture)

3

Usage

 Wave generation

 Accurate program execution timing (event
management),

 Signal timing measurement

4

Configuration

 Register TCCRn controls the timer behaviorg
 FOC0: Force Output Compare

WGM0[1:0]: Waveform Generation Mode[]

 COM01:0: Compare Match Output Mode

 CS02:0: Clock Select

5

Clock selection

 Bits CS02: CS00
 select clock frequency q y

dividing at the counter
input

6

8-bit Timer/Counter Block Diagram

7

Counter Unit

 count - Increment or
decrement TCNT0 by 1.

 direction - Select between

 clkTn – Timer/Counter clock

 TOP - Signalize that TCNT0 has
reached maximum valuedirection Select between

increment and decrement

 clear - Clear TCNT0

reached maximum value

 BOTTOM - Signalize that TCNT0
has reached minimum value
(zero)(zero).

8

Output Compare Unit

9

Output Compare Unit

 Generated waves are
visible at the I/O port
pins

 I/O port OCn bit must
be properly configured
as output pinas output pin

10

Normal, CTC

COM0[1 0] D i ti

Modes of Operation
COM0[1:0] Description

00 Normal, OC0 disconnected.

01 Toggle OC0 on compare match

10 Clear OC0 on compare match10 Clear OC0 on compare match

11 Set OC0 on compare match
Mode WGM01:00 Mode

0 00 Normal
PWM, Phase Correct

COM0[1 0] D i ti
1 01 PWM, Phase Correct

2 10 CTC

3 11 Fast PWM

COM0[1:0] Description

00 Normal, OC0 disconnected.

01 Reserved

Clear OC0 on compare match when

The mode of operation is
defined by the combination of

10
Clear OC0 on compare match when
up-counting. Set OC0 on compare
match when downcounting

11
Set OC0 on compare match when
up-counting Clear OC0 oncomparedefined by the combination of

the Waveform Generation
mode (WGM01:0) and
C O d

11 up counting. Clear OC0 oncompare
match when downcounting

Fast PWM

COM0[1:0] Description
Compare Output mode
(COM01:0) bits

00 Normal, OC0 disconnected.

01 Reserved

10
Clear OC0 on compare match, set

10
OC0 at BOTTOM

11
Set OC0 on compare match, clear
OC0 at BOTTOM 11

Modes of Operation

 Normal Mode
 The counting direction is always up (incrementing)

 8 bits (Timer 0,2) between 0 to 255

16 bit (Ti 1) b t 0 t 65535 16 bits (Timer 1) between 0 to 65535

 The counter simply overruns when it passes its
maximum value and then restarts from the bottommaximum value and then restarts from the bottom.
 Timer overflow interrupt appears

12

Modes of Operation

 CTC Clear Timer on Compare Match CTC – Clear Timer on Compare Match
When the counter value (TCNTn) reaches the value

of OCRn reset occursof OCRn, reset occurs

Generated wave frequency can be adjusted by writing
register OCRnregister OCRn

13

CTC – Clear Timer on Compare Match

 Example: Example:

 Timer1 in CTC mode (Clear Timer on Compare
M t h)Match)
 the selected clock source increments the timer

 the current value is held in TCNT1 (starts at 0)

 when TCNT1 = OCRA1, an interrupt is issued and the
ti i ttimer is reset

 by choosing OCR1A and the clock frequency, the
timer can be programmed for any time intervaltimer can be programmed for any time interval

14

Timer1 registers

15

P l l kPrescaler clock
division

16

Example:

 Timer 1 intrerrupt generated each 1s Timer 1 intrerrupt generated each 1s
 1 s => low frequency

 f =13 5MHz→division by 13 500 000 > 65536 (16 bits) → fcuarţ =13.5MHz→division by 13,500,000 > 65536 (16 bits) →
impossible

 we need the prescaler to divide some morep

 prescaler: max divisor = 1024; 13.5MHz / 1024 = 13.184 kHz

 we want 1Hz: we div ide again by 13184 = 3380h

 OCR1AH = 33h, OCR1AL = 80h

 we select the CTC mode; let’s set the remaining registers

 from the 2 previous tables: TCCR1A = 0 and

 TCCR1B= 00001101 = 0Dh

17

Good News !

 All these calculations can
be done using
CodeWizard

 You still need to read the
datasheet for the
explanation of the
different modes

18

Modes of Operation

 Fast PWM mode
 useful for setting the speed of a motor or the light g p g

intensity of a light source

 The mean value can be within maximum and
minimum values, depending on D

19

Fast PWM mode

 Frequency is fixed by the clock select bits CSn2:0 Frequency is fixed by the clock select bits CSn2:0

 Duty factor is set by writing OCR0 register

 Duty factor = OCR0 / 255 Duty factor = OCR0 / 255

20

Fast PWM mode

 Example: How to calculate the PWM frequency

U th ti / t 0 i PWM d Use the timer/counter0 in PWM mode

21

How to calculate the PWM frequency

 PWM → the frequency is constant, the duty cycle varies

Assume f 13 5MHz we divide it by: Assume fcrystal = 13.5MHz, we divide it by:
 prescaler: max 1024

 maximum value for the 8 bit timer register: 256 maximum value for the 8 bit timer register: 256

 we have fPWM = 13500000/1024/256 = 51 Hz

 Note: 51Hz is enough for light bulbs or motors, but a 51Hz flicker
is visible on LEDs

 we choose a lower prescaler: 256

 f = 13500000/256/256 = 205 Hz fPWM = 13500000/256/256 = 205 Hz

 Prescaler=256 → CS02:00 = 100 (see previous table)

22

Timer/Counter 0 Control Register

 table COM 01:00 is for the Fast PWM mode

h WGM 01 00 11 COM 01 00 10 CS 02 00 100

23

 we choose WGM 01:00 = 11, COM 01:00 = 10 CS 02:00 = 100

 the final value is: TCCR0 = 01101100 = 6Ch

Code Wizard

24

Sample program in PWM modep p g

// timer0 init in PWM

// Clock source: System Clock/256, Clock value: 52734 Hz, Mode: Fast PWM top=FFh, OC0: y p
Non-Inverted PWM

TCCR0=0x6C;

TCNT0=0x00;

OCR0=0x00;

// 4 different light intensities for LED, set using 4 different values of the OCR0 register

// pause 1 second between each intensity change

void main (void)

{ {

while(TRUE)

{

OCR0 = 0; delay ms(1000); // no lightOC 0 0; de ay_ s(000); // o g

OCR0 = 4; delay_ms(1000); // little light

OCR0 = 16; delay_ms(1000); // medium light

OCR0 = 253; delay ms(1000); // full light

25

OCR0 253; delay_ms(1000); // full light

}

}

