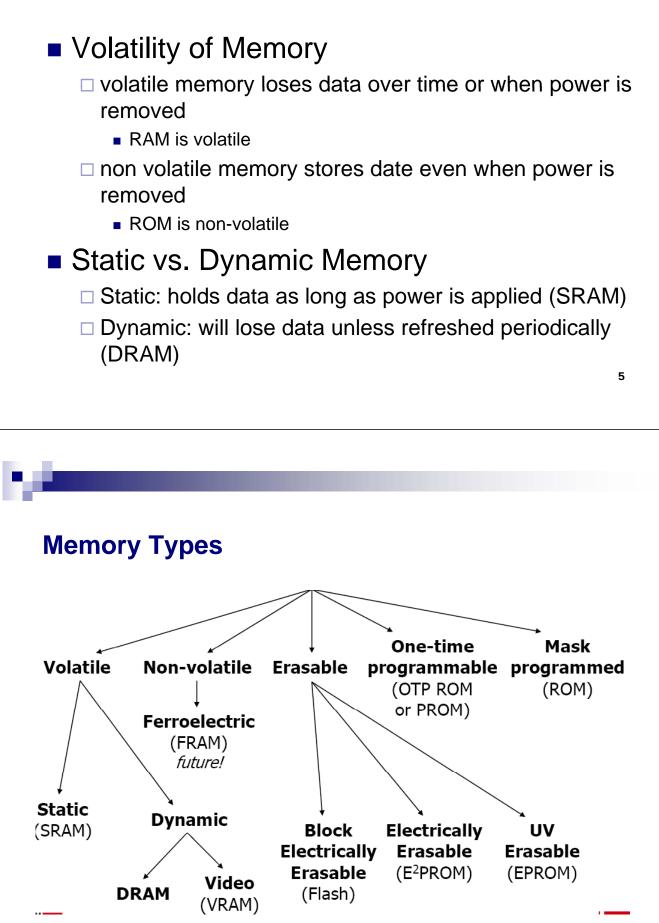


Memories

- Bits of information arranged into arrays
 - Each row is an item of information and is identified by an Address
 - The set of bits identified by the same address belong to a Word
- The number of addresses is often a power of two;
- The number of bits in a word is sometimes a multiple of four or eight, or arbitrary

Memory Basics

light


- RAM: Random Access Memory

 historically defined as memory array with individual bit access
 refers to memory with both Read and Write capabilities

 ROM: Read Only Memory

 no capabilities for "online" memory Write operations
 Write typically requires high voltages or erasing by UV
 - 4

Memory Basics

ROM: Read Only Memory

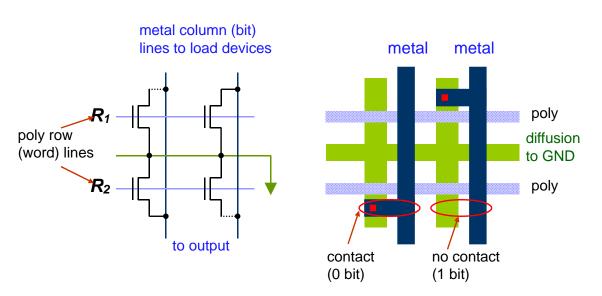
- Nonvolatile memories
- Only can access data, cannot to modify data
- Lower cost: used for permanent memory in printers, fax, and game machines, and ID cards
- Typical applications:
 - store the microcoded instructions set of a microprocessor
 - □ store a portion of the operation system for PCs
 - □ store the fixed programs for microcontrollers (firmware)

ROM: Read Only Memory

- PROM: Programmable Read Only Memory
 - programmable by user -using special program tools/modes
 - read only memory -during normal use
 - non-volatile
 - Read Operation
 - like any ROM: address bits select output bit combinations
 - □ Write Operation
 - typically requires high voltage (~15V) control inputs to set data
 - Erase Operation
 - EPROM: erasable PROM: uses UV light to reset all bits
 - EEPROM: electrically-erasable PROM, erase with control voltage

7

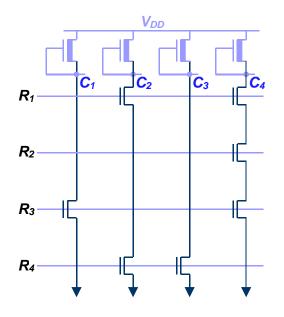
$\textbf{4bit} \times \textbf{4Bit NOR-based ROM Array}$

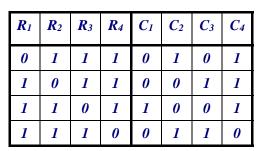


- "1" bit stored absence of an active transistor
- "0" bit stored presence of an active transistor

R ₁	R ₂	R 3	R 4	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄
1	0	0	0	0	1	0	1
0	1	0	0	0	0	1	1
0	0	1	0	1	0	0	1
0	0	0	1	0	1	1	0

A word is selected by rising to "1" the corresponding wordline


Contact-Mask Programmable NOR ROM

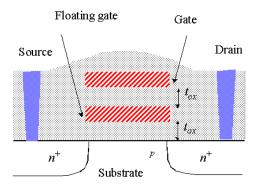

- "0" bit: drain is connected to metal line via a metal-to-diffusion contact
- "1" bit: omission the connect between drain and metal line.

9

4Bit × 4Bit NAND-based ROM Array

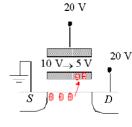
- "1" bit stored presence of a transistor that can be switched off
- "0" bit stored shorted / normally-on transistor

A word is selected by putting to "0" the corresponding wordline R_i

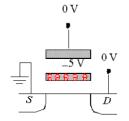

11

Nonvolatile Read-Write Memories

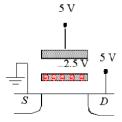
- The architecture is similar to the ROM structure
 - □ Array of transistors placed on a word-line/bit-line grid
 - Special transistor that permits its threshold to be altered electrically
 - Programming: selectively disabling or enabling some of these transistors
 - Reprogramming: erasing the old threshold values and start a new programming cycle


EPROM

- The floating gate avalanche-injection MOS (FAMOS) transistor:
- extra polysilicon strip is inserted between the gate and the channel floating gate
- impact: double the gate oxide thickness, reduce the transconductance, increase the threshold voltage
- threshold voltage is programmable by the trapping electrons on the floating gate through avalanche injection

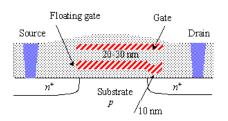


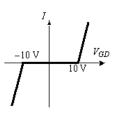
EPROM


- Electrons acquire sufficient energy to became "hot" and traverse the first oxide insulator so that they get trapped on the floating gate
- Electron accumulation on the floating gate is a self-limiting process that increases the threshold voltage (~7V)
- The trapped charge can be stored for many years
- The erasure is performed by shining strong ultraviolet light on the cells through a transparent window in the package
- The UV radiation renders the oxide conductive by direct generation of electron-hole pairs

Avalanche injection

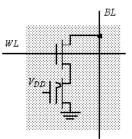
Removing programming voltage leaves charge trapped

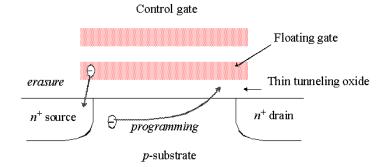

Programming results in higher $V_{\rm T}$


EPROM

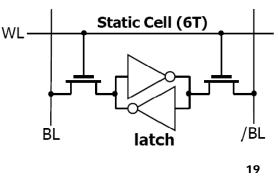
- The erasure process is slow (~min.)
- The erasure procedure is off-system!
- Programming takes several usecs/word
- Limited endurance max 1000 erase/program cycles
- The cell is very simple and dense: large memories at low cost!
- Applications that do not require regular reprogramming

EEPROM

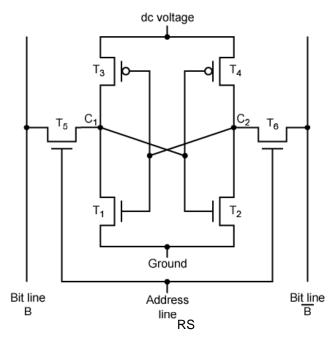

- Provide an electrical-erasure procedure
- Modified floating-gate device, floating-gate tunneling oxide (FLOTOX):
- reduce the distance between floating gate and channel near the drain
- Fowler-Nordheim tunneling mechanism (when apply 10V over the thin insulator)


EEPROM

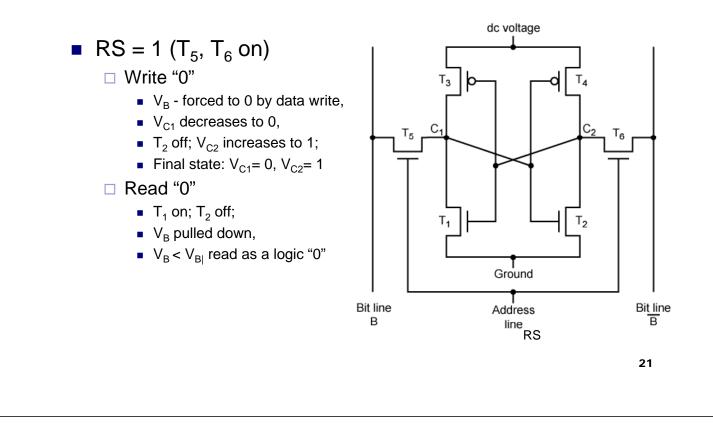
- Reversible programming by reversing the applied voltage (rise and lower the threshold voltage)
 - □ difficult to control the threshold voltage
 - extra transistor required as access device
- Larger area than EPROM
- More expensive technology than EPROM
- Offers a higher versatility than EPROM
- Can support 105 erase/write cycles


Flash Memories

- Combines the density of the EPROM with the versatility of EEPROM structures
 - □ Programming: avalanche hot-electron-injection
 - □ Erasure: Fowler-Nordheim tunneling (like EEPROM)
 - Difference: erasure is performed in bulk for the complete (or subsection of) memory chip

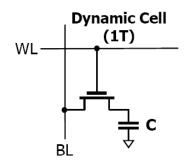

Static RAM (SRAM)

- Permit the modification (writing) of stored data bits
- The stored data can be retained infinitely, without need of any refresh operation
- 3 Operation States: hold, write, read
- Basic 6T (6 transistor) SRAM Cell
 - □ bistable (cross-coupled) INVs for storage
 - 2 access transistors
 - □ word line, WL, controls access
 - WL = 0 (hold)
 - WL = 1 (read/write)



The basic operations on SRAM cells

- RS = 0 (T₅, T₆ off) □ data is being held
- $RS = 1 (T_5, T_6 on)$
 - □ Write "1"
 - V_{BI} forced to 0 by data write,
 - V_{C2} decreases to 0,
 - T₁ off; V_{C1} increases;
 - Final state: V_{C1}= 1, V_{C2}= 0
 - □ Read "1"
 - T_1 off; T_2 on;
 - V_B pulled down,
 - V_B > V_B read as a logic "1"



The basic operations on SRAM cells

Dynamic Random Access Memory (DRAM)

- Dynamic: must be refreshed periodically
- Volatile: loses data when power is removed
- 1T DRAM Cell
 - □ single access transistor;
 - □ storage capacitor
- control input:
 - □ word line (WL);
 - \Box data I/O: bit line (BL)

