

Sequential Circuits

- Combinational Logic
\square the output(s) depends only on the current values of the input variables
- Sequential Logic circuits
\square the output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
\square they move "sequentially" through a defined sequence of transitions from one state to the next

Synchronous and Asynchronous Sequential Logic

- Synchronous
\square the timing of all state transitions is controlled by a common clock
\square changes in all variables occur simultaneously
- Asynchronous
\square state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
\square changes in more than one output do not necessarily occur simultaneously

Clock

- A clock signal is a square wave of fixed frequency
- Often, transitions will occur on one of the edges of clock pulses (i.e. the rising edge or the falling edge)

Flip-Flops

- Flip-flops (bistable) are the fundamental element of sequential circuits
- Flip-flops are essentially 1-bit storage devices
\square outputs can be set to store either 0 or 1 depending on the inputs
\square even when the inputs are de-asserted, the outputs retain their prescribed value
- Three main types of flip-flop:
$\square \mathrm{SR}, \quad \mathrm{J}-\mathrm{K}, \quad \mathrm{D}$

Flip-Flops

Flip-flop (FF) = latch = bistable circuit

NAND SR Latch

- A NAND latch has two possible resting states when SET = CLEAR = 1

NAND SR Latch

(b)

- Negative Pulse on SET input put the latch in a HIGH (SET) state

NAND SR Latch

- Negative Pulse on CLEAR input put the latch in a LOW (Clear or RESET) state.

NAND SR Latch

Set	Cleas	Output
1	1	No change
0	1	$Q=1$
1	0	$Q=0$
0	0	Invalid*

(b)

- Truth table for the NAND Set-Clear (Set-Reset or SR) Latch

NAND SR Latch

NAND SR Latch to deglitch a switch

(a)

(b)

NOR SR Latch

*produces $\mathbf{Q}=\bar{Q}=0$
(b)
(a)

(c)

Clocked Flip-Flop Circuits

- Digital systems can operate
\square Asynchronously: output can change state whenever inputs change
\square Synchronously: output only change state at clock transitions (edges)

Clocked Flip-Flop Circuits

- Clock signal

\square Outputs change state at the edge (transition) of the input clock
\square Positive-going transitions (PGT)Negative-going transitions (NGT)

Clocked S-R FF

- On positive-going edge of a clock pulse

(b)

Clocked J-K FF

- J=K=1 condition does not result in an ambiguous output

(a)

Clocked D Flip-Flop

- It can be obtained from J-K Flip-Flop

(a)

Registers

- A register is a digital electronic device capable of storing several bits of data
\square Normally made from D-type flip-flops with asynchronous RESET inputs
\square Operates on the bits of the data word in parallel
\square Data on each data input is stored in the flip-flop on the rising edge of CLOCK
\square The data can be read from the Q outputs
\square The register can be cleared (zeroed) by asserting the CLEAR inputs

3-bit Parallel in/Parallel out

Shift Registers

Divide by 2 Circuit

- Consider a D-type flip-flop with Q connected to D

- The frequency of Q is half the frequency of CLOCK

Asynchronous Binary Counters

Asynchronous Binary Counters

- Limitations
\square Consider the change from count 3 to count 4

1. CLOCK goes from low to high
2. Q0 goes from high to low
3. Q1 goes from high to low
4. Q2 goes from low to high
\square The "CLOCK-TO-Q" delay of a typical flip-flop is about 30 ns
\square Hence total time needed is about 90 ns.
\square Hence max CLOCK frequency is $=11.1 \mathrm{MHz}$
