

Sequential Circuits

- Combinational Logic
 - the output(s) depends only on the current values of the input variables
- Sequential Logic circuits
 - the output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
 - they move "sequentially" through a defined sequence of transitions from one state to the next

Synchronous and Asynchronous Sequential Logic

- Synchronous
 - the timing of all state transitions is controlled by a common clock
 - □ changes in all variables occur simultaneously
- Asynchronous
 - state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
 - changes in more than one output do not necessarily occur simultaneously

Clock

- A clock signal is a square wave of fixed frequency
- Often, transitions will occur on one of the edges of clock pulses (i.e. the rising edge or the falling edge)

3

Flip-Flops

- Flip-flops (bistable) are the fundamental element of sequential circuits
- Flip-flops are essentially 1-bit storage devices
 - outputs can be set to store either 0 or 1 depending on the inputs
 - even when the inputs are de-asserted, the outputs retain their prescribed value
- Three main types of flip-flop:

 \Box SR, J-K, D

Flip-Flops

Flip-flop (FF) = latch = bistable circuit

5

 Negative Pulse on SET input put the latch in a HIGH (SET) state

 Negative Pulse on CLEAR input put the latch in a LOW (Clear or RESET) state.

Set	Clear	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid*
*produces Q = Q = 1		

(b)

 Truth table for the NAND Set-Clear (Set-Reset or SR) Latch 9

NAND SR Latch

τ₂ τ₃

Ť4

1

 $T_5 T_6$

11

NAND SR Latch to deglitch a switch

0

I

T₁

NOR SR Latch

Clocked Flip-Flop Circuits

- Digital systems can operate
 - Asynchronously: output can change state whenever inputs change
 - Synchronously: output only change state at clock transitions (edges)

Clocked Flip-Flop Circuits

Clocked D Flip-Flop

 It can be obtained from J-K Flip-Flop

Registers

- A register is a digital electronic device capable of storing several bits of data
 - Normally made from D-type flip-flops with asynchronous RESET inputs
 - □ Operates on the bits of the data word in parallel
 - Data on each data input is stored in the flip-flop on the rising edge of CLOCK
 - □ The data can be read from the Q outputs
 - The register can be cleared (zeroed) by asserting the CLEAR inputs

3-bit Parallel in/Parallel out

Shift Registers

21

Divide by 2 Circuit

Consider a D-type flip-flop with Q connected to D

• The frequency of Q is half the frequency of CLOCK

Asynchronous Binary Counters

Limitations

- □ Consider the change from count 3 to count 4
 - 1. CLOCK goes from low to high
 - 2. Q0 goes from high to low
 - 3. Q1 goes from high to low
 - 4. Q2 goes from low to high
- The "CLOCK-TO-Q" delay of a typical flip-flop is about 30 ns
- \Box Hence total time needed is about 90 ns.
- □ Hence max CLOCK frequency is = 11.1 MHz