

Numeration Systems

Decimal

□ the set of symbols is: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; □ The integer number 493 in base 10: $493_{10} = 4 \cdot 10^2 + 9 \cdot 10^1 + 3 \cdot 10^0 =$ = 400 + 90 + 3□ The *rational* number 35,54 in base 10: $35.64_{10} = 3 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1} + 4 \cdot 10^{-2} =$ = 30 + 5 + 0.6 + 0.04

Numeration Systems

Binary

□ the set of symbols is: {0, 1}; □ $11001_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 =$ = 16 + 8 + 1 = 25□ $110.01_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} =$ = 4 + 2 + 0.25 = 6.25

Conversion between numeration systems

Conversion from binary into hexadecimal

□ Group into 4 bits (nibbles)

□ Each nibble corresponds to a hexadecimal symbol:

Conversion between numeration systems

Conversion from decimal into base b

□ For the **integer part** we can write:

$$i = \left(\left(\left(\left(d_k b + d_{k-1} \right) b + ... + d_3 \right) b + d_2 \right) b + d_1 \right) b + d_0$$

- **d**₀ is the remainder of division of *i* to *b*
- The quotient (another integer) is divided to b
- Repeat until reach 0.
- The remainder obtained after each division is the symbol d_k of representing into the base b.

 $i = d_k b^k + d_{k-1} b^{k-1} + \dots + d_3 b^3 + d_2 b^2 + d_1 b^1 + d_0 b^0$

Conversion between numeration systems

Conversion from decimal into base b

□ For the **fractional part**:

 $f = d_{-1}b^{-1} + d_{-2}b^{-2} + d_{-3}b^{-3} + \dots + d_{-k}b^{-k} + \dots$

Multiply f with b

 $\mathbf{b} \cdot f = \mathbf{d}_{-1} + \mathbf{d}_{-2}\mathbf{b}^{-1} + \mathbf{d}_{-3}\mathbf{b}^{-2} + \dots + \mathbf{d}_{-k}\mathbf{b}^{-k+1} + \dots$

- Keep the integer part from the right part, d⁻¹, which is subtracted from the left part.
- Continue by multiplying the remaining fractionary part to b until reach 0.

$$b(b \cdot f - d_{-1}) = d_{-2} + d_{-3}b^{-1} + \dots + d_{-k}b^{-k+2} + \dots$$

Conversion between numeration systems

EXAMPLE:

 \Box Represent the number 23.65 into base 2:

• The integer part:

23 : 2 = 1	L1	1	LSB
L1:2=	5	1	
5:2=	2	1	
2:2=	1	0	
1:2=	0	1	MSB
	23 ₁₀ =	1011	1 ₂

Conversion between numeration systems

The fractional part:

$0.65 \times 2 = 1.3$	1	MSB
0.3 × 2 = 0.6	0	
$0.6 \times 2 = 1.2$	1	
$0.2 \times 2 = 0.4$	0	
$0.4 \times 2 = 0.8$	0	$0.65_{10} = 0.10(1001)_2$
0.8 × 2 = 1.6	1	
$0.6 \times 2 = 1.2$	1	
$0.2 \times 2 = 0.4$	0	

 Results that number 0.65 cannot be exactly represented on a finite number of bits.

Negative numbers representation

- MSB sign bit.
 - \Box 0 for positive numbers (+);
 - \Box 1 for negative numbers (–).
- The rest of *N*-1 bits are for value representation.

	2 ^{N-2}		20
S		m	
1 bit	÷	N-1 bits	\rightarrow

Negative numbers representation

The representation: sign bit, magnitude

EXAMPLE:

- 9 = 0 01001
- -9 = 1 01001

\Box The range of representation:

- 2^{N-1} positive values between 0 and $2^{N-1}-1$.
- 2^{N-1} negative values between $-(2^{N-1}-1)$ and 0.

	2 ^{N-2}		2 ⁰
S		m	
1 bit	÷	<i>N</i> −1 bits	\rightarrow

Negative numbers representation

Two's complement representation The negative numbers representation is obtained by addition of 2^N. EXAMPLE: For N=6 bits (2^N = 64). 13 = 001101₂ -13 corresponds to 64 + (-13) = 51 = 110011₂

Two's complement representation

For obtaining negative numbers:

- Each bit is complemented;
- Add 1.

□ EXAMPLE:

for	13 =	001101 ₂
complement each	bit:	110010 ₂
add 1:		$110011_2 = -13$
for –	-13 =	110011 ₂
complement each	bit:	001100 ₂
add 1:		001101 ₂ = +13

Two's complement representation

- The range of two's complement representation
 □ 2^{N-1} positive values between 0 and 2^{N-1}−1.
 - \Box 2^{*N*-1} negative values between -2^{*N*-1} and -1.
- The result of adding a number with its two's complement is 0:

13+	001101 ₂
-13	110011 ₂
= 0	10000002

13

Integer numbers representation

- Binary representation is considered right aligned (decimal point is right to LSB).
- MSB represents the sign bit.

Integer two's complement range:

$$-2^{N-1},...,-1,0,...,2^{N-1}-1$$

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

EXAMPLE: (for *N*=4 bits)

Decimal	Binary
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

15

Integer numbers representation

Sign integers addition

	1 111		011		-1 1
+3	0011	-5	1011	-3	1101
-2	1110	+3	0011	4	1100
1	0001	-2	1110	-7	1001

□ An overflow occurs if the result is outside of the *N* bits representation range:

+3	0011	-3	1101
+6	0110	6	1010
9	1001=-7	-9	0111 =7

Sign bit extension

- Needed when increasing the number of bits for the integer part.
- \Box Sign bit is copied to the left toward MSB.

	N=4 biţi		N′=8 biţi
+3	O 011	+3	0000 0 011
-3	1 101	-3	1111 1 101

17

Integer numbers representation

Multiplying by a power of 2

□ Multiplying by 2^k is equivalent with shifting left k bits and filling with 0 toward LSB.

	N=8 biţi	_		N=8 biţi
3	0000 0011	_	-3	1111 1101
3 [.] 2 ²	0000 11 00		-3 [.] 2 ²	1111 01 00

Dividing by a power of 2

□ **Dividing** by 2^k is equivalent with shifting right *k* bits and sign bit extension.

	N=8 biţi		N=8 biţi
24	0001 1000	-24	1110 1000
24/2 ³	000 0 0011	-24/2 ³	111 1 1101

19

Integer numbers representation

Integers multiplication

unsigned integers

- The result in double precision representation
- Binary multiplication with0 and 1

- Multiplication is equivalent with consecutive shift and add operations.
 - \Box For example 5 can be expressed:

$$5 = 2^0 + 2^2$$

□ Multiplication can be computed:

$$6 \times 5 = 6 \times (2^{0} + 2^{2}) = 6 \times 1 + 6 \times 2^{2}$$

$$6 \times 1 \qquad 0110 \\
6 \times 2^{2} \qquad 0110 + \\
0011110 \qquad +$$

21

Integer numbers representation

Integers division

Successive subtractions of the divisor from the dividend.

A fractional part f is any number who's modulus satisfies the inequality:

$$0.0 \le |f| < 1.0$$

□ Left aligned: binary point is at the right of MSB

 -2^0 2^{-1} 2^{-B} s.f1bit \leftarrow B=N-1 bits \rightarrow

□ Fixed point fractional representation range:

$$-1, \dots, -2^{-B}, 0, 2^{-B}, \dots, 1-2^{-B}$$

23

Fractional numbers representation

EXAMPLE:

\Box for *N*=4 bits

Decimal	Binary
0	0000
0.125	0001
0.250	0010
0.375	0011
0.500	0100
0.625	0101
0.750	0110
0.875	0111

Decimal	Binary
-1	1000
-0.875	1001
-0.750	1010
-0.625	1011
-0.500	1100
-0.375	1101
-0.250	1110
-0.125	1111

Qm.n format

- \Box *n* bits for fractional part;
- □ (optional) specify the number of bits *m* for the integer part, excluding the sign bit (MSB);
- \Box The complete binary representation has 1+m+n bits.
- **EXAMPLE** (for *N*=16 bits):
 - Q15 means 15 bits for the fractional part (16 bits with the sign bit)
 - Q1.14 has 1 bit for the integer part, 14 bits for the fractional part and the sign bit.

Fractional numbers representation

Quick conversion of fractional numbers into binary

☐ f represented on N=B+1 bits is an integer multiple of 2^{-B}

 -2°
 2⁻¹
 2⁻²
 ...
 2^{-B}

 s
 f

□ Let *i* the corresponding integer multiple:

$$i = f \cdot 2^{E}$$

• Equivalent with a left shifting of *f* with B bits.

□ Converting *f* from binary to decimal

 consider the binary representation for the corresponding signed integer *i* and then, divide by 2^B

Fractional numbers representation

EXAMPLE:

- \Box Binary to decimal (*N*=8 bits, *B*=7),
 - For: 0.010 0110
 decimal integer: 0010 0110 = 38₁₀
 divide by 2⁷=128: 38/128 = 0.296875
 - For: 1.110 1100
 two's complement: -0001 0100 = -20₁₀
 divide by 2⁷=128: -20/128 = -0.15625

 \Box Converting *f* from decimal to binary

- multiply f by 2^B (shift left B bits)
- Represent the integer part *i* as a signed integer on *N* bits.

29

Fractional numbers representation

EXAMPLE:

 \Box Decimal to binary (*N*=8 biţi, *B*=7)

- For: 0.875 multiply by 2^7 : 0.875 $\cdot 128 = 112_{10}$ represented binary: $112_{10} = 01110000_2$
- For:-0.625multiply by 2^7 : $-0.625 \cdot 128 = -80_{10}$ represented in $80_{10} = 0101000_2$ two's complement: $-80_{10} = 1011000_2$

- For 0.65 (N=8 bits, B=7)multiply by 2⁷: $0.65 \cdot 128 = 83.2_{10}$ take the integer part: $83_{10} = 01010011_2$
- In the last example the quantization error (by truncation) appears since the fractional 0.65 cannot be exactly represented on 8 bits.
 - The result 0.1010011₂ is equal to 0.6484375.
 - The quantization error is:

0.65 <u>- 0.6484375</u> = 0.0015625

The following are equivalent representations of 1,234				
123,400	. 0	х	10 ⁻²	
12,340	.0	x	10 ⁻¹	
1,234	. 0	x	100	\int I he representations differ in that the decimal place –
123	. 4	x	10 ¹	the "point" – "floats" to the
12	.34	x	10 ²	left or right (with the
1	.234	x	10 ³	the exponent).
0	.1234	x	104	

Parts of a Floating Point Number

IEEE 754 Standard

- Single precision: 32 bits, consisting of...
 - \Box Sign bit (1 bit)
 - □ Exponent (8 bits)
 - □ Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
 - □ Sign bit (1 bit)
 - □ Exponent (11 bits)
 - □ Mantissa (52 bits)

Single Precision Format

Normalization

Excess Notation

To include +ve notation is used	and –ve exponents, "excess" I
Single precision	n: excess 127
Double precision	on: excess 1023
The value of the the actual exponent	e exponent stored is larger than nent
E.g., excess 12	7,
\Box Exponent \rightarrow	10000111
Represents	135 - 127 = 8

Example

Single precision

0 10000010 11000000000000000000000

Hexadecimal

It is convenient and common to represent the original floating point number in hexadecimal

0 10000010 11000000000000000000000

4 1 6 0 0 0 0 0

The preceding example...

What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

Converting from Floating Point

Step 2
 Find "real" exponent, n
 n = E - 127
 = 10000010₂ - 127
 = 130 - 127
 = 3

Converting <u>from</u> Floating Point

- Step 3
 - □ Put S, M, and *n* together to form binary result
 - □ (Don't forget the implied "1." on the left of the mantissa.)

 $-1.1111011_2 \times 2^n =$

 $-1.1111011_2 \times 2^3 =$

-1111.1011₂

Converting <u>from</u> Floating Point

Step 4

□ Express result in decimal

100100.10012

Converting to Floating Point

Step 2
 Normalize

 $100100.1001_2 =$

 $1.001001001_2 \times 2^5$

47

Converting to Floating Point

Step 3

□ Determine S, E, and M

Converting to Floating Point

Step 4

□ Put S, E, and M together to form 32-bit binary result

0	10000100	001001001000000000000000000000000000000
S	E	М

49

Converting to Floating Point

Step 5

□ Express in hexadecimal

Answer: 42124000₁₆