Digital Integrated Circuits &

Microcontrollers

Chapter 2. Binary representation

" J
Numeration Systems

m Decimal

the set of symbols is:
{0,1,2,3,4,5,6,7,8, 9}

The integer number 493 in base 10:
493,,= 4102 + 9+10" + 3100 =
=400 + 90 +3
The rational number 35,54 in base 10:
35.64,5= 310" + 52100 + 610" + 4102 =
=30 + 5 + 0.6 + 0.04

Numeration Systems

m Binary
the set of symbols is:
{0, 1};
11001, = 124 + 1223 + 0022 + 02" + 120 =

=16+8+1=25
110.01, = 1022 + 1021 + 0020 + 021 + 1+2-2=
=4+2+0.25=6.25

" JE
Conversion between numeration systems

m Conversion from binary into hexadecimal
Group into 4 bits (nibbles)
Each nibble corresponds to a hexadecimal symbol:

1101101,1001101,
0110 1101,1001 1010,

6 D , 9 Ag

Conversion between numeration systems

m Conversion from decimal into base b
For the integer part we can write:

i=((((db+d;) b+ dy)b+d,)b+ d,)b+ d

» d, is the remainder of division of i to b
m The quotient (another integer) is divided to b
m Repeat until reach 0.

» The remainder obtained after each division is the symbol d, of
representing into the base b.

i=db"+d b +.+db’+db’+db +db°

Conversion between numeration systems

m Conversion from decimal into base b

For the fractional part:
f=d,b'+d,b?+d b +..+d b ¥ +..

m Multiply f with b
b-f=d, +d b +d b?+..+d b*" +..
m Keep the integer part from the right part, d-1, which is
subtracted from the left part.

m Continue by multiplying the remaining fractionary part to b until
reach 0.

b(b-f—d)=d,+d b +..+d b7 +..

Conversion between numeration systems

m EXAMPLE:

Represent the number 23.65 into base 2:
m The integer part:

23:2 =11 1 LSB
11:2=5 1
2= 2 1
2=1 0
1:2=0 1 MSB
23,,=10111,

Conversion between numeration systems

m The fractional part:

0.65x2=1.3 1 MSB

0.3 x2=0.6 0

0.6 x2=1.2 1

0.2 x2=0.4 0

04 x2=0.8 0 0.65,,=0.10(1001),
0.8 x2=1.6 1

0.6 x2=1.2 1

0.2 x2=0.4 0

m Results that number 0.65 cannot be exactly represented on a
finite number of bits.

" J
Negative numbers representation
m MSB - sign bit.

0 for positive numbers (+);
1 for negative numbers (-).

m The rest of N—1 bits are for value representation.

2N—2 20

1 bit | € N-1 bits >

Negative numbers representation

m The representation: sign bit, magnitude

EXAMPLE:
9=001001
-9=101001
The range of representation:
m 2N-1 positive values between 0 and 2N-1-1.
» 2N-1 negative values between —(2N-'-1) and 0.

2N—2 . 20

1 bit | € N-1 bits >

10

Negative numbers representation

m Two’s complement representation

The negative numbers representation is obtained by
addition of 2N,
EXAMPLE:
» For N=6 bits (2N = 64).
13 =001101,
—13 corresponds to 64 + (-13) = 51 = 110011,

" J
Two’s complement representation

m For obtaining negative numbers:
m Each bit is complemented;

= Add 1.
EXAMPLE:
n for 13 =001101,
complement each bit: 110010,
add 1: 110011, =-13
n for -13 =110011,

complement each bit: 001100,
add 1: 001101, = +13

Two’s complement representation

m The range of two’s complement representation
2N-1 positive values between 0 and 2N-1-1.
2N-1 negative values between —2N-1 and -1.

m The result of adding a number with its two’s
complement is O:

13+ 001101,
-13 110011,
=0 | 1000000,

13

" J
Integer numbers representation

m Binary representation is considered right
aligned (decimal point is right to LSB).

m MSB represents the sign bit.

_2N—1 2N—2 20
S i .
& N biti >

m Integer two’s complement range:

NA . —1,0,...,2N T 1

14

" JJE
Integer numbers representation

m EXAMPLE: (for N=4 bits)

Decimal Binary Decimal Binary
0 0000 -8 1000
1 0001 -7 1001
2 0010 -6 1010
3 0011 -5 1011
4 0100 -4 1100
5 0101 -3 1101
6 0110 -2 1110
7 0111 -1 1111

15

" J
Integer numbers representation

m Sign integers addition

1111 011 31
+3‘ 0011 —5‘ 1011 —3‘ 1101
-2| 1110 +3| 0011 -4| 1100

1| 0001 -2| 1110 -7| 1001

An overflow occurs if the result is outside of the N bits
representation range:

+3| 0011 -3 1101
+6| 0110 -6 1010
9| 1001=-7 -9| 0111 =7

16

Integer numbers representation

m Sign bit extension

Needed when increasing the number of bits for the
integer part.
Sign bit is copied to the left toward MSB.

N=4 biti N’=8 biti
+3| 0011 +3| 0000 0011
3| 1101 ~3| 1111 1101

17

Integer numbers representation

m Multiplying by a power of 2

Multiplying by 2k is equivalent with shifting left k
bits and filling with O toward LSB.

| N=8 bit] | N=8 biti
3 0000 0011 -3 1111 1101
3:22 | 0000 1100 ~-322 1111 0100

18

" J
Integer numbers representation
m Dividing by a power of 2

Dividing by 2k is equivalent with shifting right k bits
and sign bit extension.

| N=8 biti | N=8 biti
24 0001 1000 —24 1110 1000
24/23| 0000 0011 -24/2% | 1111 1101

19

" J
Integer numbers representation

m Integers multiplication

unsigned integers

The .re.sult in double | 6 0110
precision representation %5 x0101

Binary multiplication with 0110
0and 1 0000
0110
0000 +
30|0011110

20

Integer numbers representation

m Multiplication is equivalent with consecutive shift
and add operations.

For example 5 can be expressed:
5=20+27
Multiplication can be computed:

6><5:6><(2°+22)=6><1+6><22

6x1 0110
6x22| 0110 +
0011110

21

" J
Integer numbers representation

m Integers division
Successive subtractions of the divisor from the

dividend.
15| 3 1111 |11
5 -11 101
0011
-11

00

22

Fractional numbers representation

m A fractional part f is any number who’'s modulus
satisfies the inequality:

0.0<| f|<1.0
Left aligned: binary point is at the right of MSB
-20 2-1 2-2 2B
S . f
1bit | €« B=N-1 bits ->

Fixed point fractional representation range:

~1,...,-28028.,1-28

23

Fractional numbers representation

m EXAMPLE:

for N=4 bits
Decimal Binary Decimal Binary
0 0000 -1 1000
0.125 0001 -0.875 1001
0.250 0010 -0.750 1010
0.375 0011 -0.625 1011
0.500 0100 -0.500 1100
0.625 0101 -0.375 1101
0.750 0110 -0.250 1110
0.875 0111 -0.125 1111

24

" J
Fractional numbers representation

m Qm.n format
n bits for fractional part;

(optional) specify the number of bits m for the integer

part, excluding the sign bit (MSB);

The complete binary representation has 1+m+n bits.
m EXAMPLE (for N=16 bits):

Q15 means 15 bits for the fractional part (16 bits with the sign

bit

Q1).14 has 1 bit for the integer part, 14 bits for the fractional part

and the sign bit.

25

" J
Fractional numbers representation

m Quick conversion of fractional numbers into
binary

f represented on N=B+1 bits is an integer multiple of

-B
2 -20 2-1 2-2 2B

S . f

Let i the corresponding integer multiple:
i=f.2°
m Equivalent with a left shifting of f with B bits.

26

Fractional numbers representation

-20 2-1 2B
S . f
_2B 28—1 20
S I
< N bits ->

Converting f from binary to decimal

m consider the binary representation for the corresponding
signed integer i and then, divide by 2B

27

Fractional numbers representation

m EXAMPLE:
Binary to decimal (N=8 bits, B=7),
m For: 0.010 0110
decimal integer: 0010 0110 = 38,

divide by 27=128: 38/128 = 0.296875

= For: 1.110 1100
two’s complement: —0001 0100 =-204,
divide by 27=128: —20/128 = -0.15625

28

Fractional numbers representation

-20 2-1 2B
S . f
_2B 28—1 20
S I
< N biti -

Converting f from decimal to binary
= multiply f by 2B (shift left B bits)
m Represent the integer part i as a signed integer on N bits.

29

Fractional numbers representation

m EXAMPLE:
Decimal to binary (N=8 biti, B=7)

m For: 0.875
multiply by 27: 0.875128=112,,
represented binary: 112,, = 01110000,

m For: —0.625
multiply by 27: —0.625-128= -80,,
represented in 80,, = 01010000,

two’s complement: -804, = 10110000,

30

" J
Fractional numbers representation

m For 0.65 (N=8 bits, B=7)
multiply by 27: 0.65128= 83.2,,
take the integer part: 83,,=01010011,

In the last example the quantization error (by
truncation) appears since the fractional 0.65 cannot
be exactly represented on 8 bits.

m The result 0.1010011, is equal to 0.6484375.

m The quantization error is: 0.65
- 0.6484375
= 0.0015625

31

Floating point representation

m The following are equivalent
representations of| 1,234

123 ,400?O X 10-2

12,340.0 x 10-1 p \

: The representations differ

0 |
1,234 ! 0 x 10 in that the decimal place —
123.4 x 101 the “point” — “floats” to the
12 34 x 102 left or right (with the

appropriate adjustment in

1.234 x 10° | the exponent).)
0.1234 x 10* !

32

"

Parts of a Floating Point Number

-0.9876 x 103

[lom
e

33

"

IEEE 754 Standard

m Single precision: 32 bits, consisting of...
1 Sign bit (1 bit)
1 Exponent (8 bits)
1 Mantissa (23 bits)

m Double precision: 64 bits, consisting of...
1 Sign bit (1 bit)
1 Exponent (11 bits)
1 Mantissa (52 bits)

34

"
Single Precision Format

32 bits

=

A 4

35

"

Normalization

m The mantissa is normalized
“1 Has an implied decimal place on left
1 Has an implied “1” on left of the decimal place
m E.g,
1 Mantissa - 10100000000000000000000
“IRepresents... 1.101, = 1.625,,

36

"

Excess Notation

m To include +ve and —ve exponents, “excess”
notation is used
1 Single precision: excess 127
1 Double precision: excess 1023

m The value of the exponent stored is larger than
the actual exponent

m E.g., excess 127,
-1 Exponent — 10000111

1 Represents... 135 — 127 = 8

"
Example

m Single precision
O 10000010 11000000000000000000000

A 4 A 4

> +1.11,x 2= 1110.0, = 14.0,,

Hexadecimal

m It is convenient and common to represent the
original floating point number in hexadecimal

m The preceding example...

O 10000010 11000000000000000000000

4 1 6 0 O0 0 O O

39

" J
Converting from Floating Point

m What decimal value is represented by the
following 32-bit floating point number?

C17B0000,

40

Converting from Floating Point

m Step 1
Express in binary and find S, E, and M
C17B0000,4 =
1 10000010 11110110000000000000000,
S E M
1 =-negative
0 = positive

41

" J
Converting from Floating Point

m Step 2
Find “real” exponent, n
n =g-127
=10000010, — 127
=130 -127
=3

42

" J
Converting from Floating Point

m Step 3
Put S, M, and n together to form binary result

(Don’t forget the implied “1.” on the left of the
mantissa.)

-1.1111011, x 2"

-1.1111011, x 23

-1111.1011,

43

Converting from Floating Point

m Step 4
Express result in decimal
-1111.1011,
B L1205
23 =0.125
24 =0.0625

0.6875

/
Answer: -15.6875

44

" J
Converting to Floating Point

m Express 36.5625,, as a 32-bit floating point
number (in hexadecimal)

45

" J
Converting to Floating Point

m Step 1

Express original value in binary

36.5625,, =

100100.1001,

46

" J
Converting to Floating Point

m Step 2

Normalize

100100.1001, =

1.001001001, x 25

47

" J
Converting to Floating Point

m Step 3
Determine S, E, and M

+1.001001001, X 2&

S M N

E =n+127
=5+127
=132
=10000100,

S = 0 (because the value is positive)

48

" J
Converting to Floating Point

m Step 4
Put S, E, and M together to form 32-bit binary result

0 10000100 00100100100000000000000,
S E M

49

" JE
Converting to Floating Point

m Step 5

Express in hexadecimal

0 10000100 00100100100000000000000, =
0100 0010 0001 0010 0100 0000 0000 0000, =
4 2 1 2 4 0 0 O

Answer: 42124000,

50

