Digital Integrated Circuits \& Microcontrollers

Chapter 2. Binary representation

Numeration Systems

■ Decimal
\square the set of symbols is:
$\{0,1,2,3,4,5,6,7,8,9\}$;
\square The integer number 493 in base 10:

$$
\begin{aligned}
493_{10} & =4 \cdot 10^{2}+9 \cdot 10^{1}+3 \cdot 10^{0}= \\
& =400+90+3
\end{aligned}
$$

\square The rational number 35,54 in base 10:

$$
\begin{gathered}
35.64_{10}=3 \cdot 10^{1}+5 \cdot 10^{0}+6 \cdot 10^{-1}+4 \cdot 10^{-2}= \\
=30+5+0.6+0.04
\end{gathered}
$$

Numeration Systems

- Binary
\square the set of symbols is:
\{0, 1\};
$\square 11001_{2}=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=$ $=16+8+1=25$$\begin{aligned} 110.01_{2} & =1 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}+0 \cdot 2^{-1}+1 \cdot 2^{-2}= \\ & =4+2+0.25=6.25\end{aligned}$

$$
=4+2+0.25=6.25
$$

Conversion between numeration systems

- Conversion from binary into hexadecimal
\square Group into 4 bits (nibbles)
\square Each nibble corresponds to a hexadecimal symbol:

$1101101,1001101_{2}$			
0110	1101,	1001	1010_{2}
6	D	9	$\mathrm{~A}_{16}$

Conversion between numeration systems

- Conversion from decimal into base b
\square For the integer part we can write:

$$
i=\left(\left(\left(\left(\mathrm{d}_{k} \mathrm{~b}+\mathrm{d}_{k-1}\right) \mathrm{b}+\ldots+\mathrm{d}_{3}\right) \mathrm{b}+\mathrm{d}_{2}\right) \mathrm{b}+\mathrm{d}_{1}\right) \mathrm{b}+\mathrm{d}_{0}
$$

- \mathbf{d}_{0} is the remainder of division of i to b
- The quotient (another integer) is divided to \boldsymbol{b}
- Repeat until reach 0 .
- The remainder obtained after each division is the symbol $\mathbf{d}_{\boldsymbol{k}}$ of representing into the base \boldsymbol{b}.
$i=d_{k} b^{k}+d_{k-1} b^{k-1}+\ldots+d_{3} b^{3}+d_{2} b^{2}+d_{1} b^{1}+d_{0} b^{0}$

Conversion between numeration systems

- Conversion from decimal into base b
\square For the fractional part:

$$
f=\mathrm{d}_{-1} \mathrm{~b}^{-1}+\mathrm{d}_{-2} \mathrm{~b}^{-2}+\mathrm{d}_{-3} \mathrm{~b}^{-3}+\ldots+\mathrm{d}_{-k} \mathrm{~b}^{-k}+\ldots
$$

- Multiply f with b

$$
\mathrm{b} \cdot f=\mathrm{d}_{-1}+\mathrm{d}_{-2} \mathrm{~b}^{-1}+\mathrm{d}_{-3} \mathrm{~b}^{-2}+\ldots+\mathrm{d}_{-k} \mathrm{~b}^{-k+1}+\ldots
$$

- Keep the integer part from the right part, \mathbf{d}^{-1}, which is subtracted from the left part.
- Continue by multiplying the remaining fractionary part to b until reach 0 .

$$
\mathrm{b}\left(\mathrm{~b} \cdot f-\mathrm{d}_{-1}\right)=\mathrm{d}_{-2}+\mathrm{d}_{-3} \mathrm{~b}^{-1}+\ldots+\mathrm{d}_{-k} \mathrm{~b}^{-k+2}+\ldots
$$

Conversion between numeration systems

- EXAMPLE:

Represent the number 23.65 into base 2:

- The integer part:

$23: 2$	$=11$	1
$11: 2=5$	1	
$5: 2=$	2	
$2: 2=1$	0	
$1: 2=0$	1	MSB

$23_{10}=\mathbf{1 0 1 1 1}_{2}$

Conversion between numeration systems

- The fractional part:

$0.65 \times 2=1.3$	1	MSB
$0.3 \times 2=0.6$	0	
$0.6 \times 2=1.2$	1	
$0.2 \times 2=0.4$	0	
$0.4 \times 2=0.8$	0	$0.65{ }_{10}=\mathbf{0 . 1 0 (1 0 0 1)}{ }_{2}$
$0.8 \times 2=1.6$	1	
$0.6 \times 2=1.2$	1	
$0.2 \times 2=0.4$	0	

- Results that number 0.65 cannot be exactly represented on a finite number of bits.

Negative numbers representation

- MSB - sign bit.
$\square 0$ for positive numbers (+);
$\square 1$ for negative numbers (-).
- The rest of $\mathrm{N}-1$ bits are for value representation.

$2^{\mathrm{N}-2}$	\ldots	2^{0}	
\mathbf{s}		\mathbf{m}	
1 bit	\leftarrow	$\mathrm{N}-1$ bits	\rightarrow

Negative numbers representation

- The representation: sign bit, magnitude

EXAMPLE:

$$
\begin{array}{r}
9=001001 \\
-9=101001
\end{array}
$$

\square The range of representation:

- 2^{N-1} positive values between 0 and $2^{N-1}-1$.
- 2^{N-1} negative values between $-\left(2^{N-1}-1\right)$ and 0 .

$2^{\mathrm{NN}-2}$	\ldots	2^{0}	
\mathbf{s}		\mathbf{m}	
1 bit	\leftarrow	$\mathrm{N}-1$ bits	\rightarrow

Negative numbers representation

- Two's complement representation
\square The negative numbers representation is obtained by addition of 2^{N}.

\square EXAMPLE:

- For $N=6$ bits $\left(2^{N}=64\right)$.
$13=001101_{2}$
-13 corresponds to $64+(-13)=51=110011_{2}$

Two's complement representation

- For obtaining negative numbers:
- Each bit is complemented;
- Add 1.

EXAMPLE:

- for

$$
13=001101_{2}
$$

complement each bit: 110010_{2}
add 1: $\quad 110011_{2}=-13$

- for $\quad-13=110011_{2}$
complement each bit: 001100_{2}
add 1:
$001101_{2}=+13$

Two's complement representation

- The range of two's complement representation
$\square 2^{N-1}$ positive values between 0 and $2^{N-1}-1$.
$\square 2^{N-1}$ negative values between -2^{N-1} and -1 .
- The result of adding a number with its two's complement is 0 :

$13+$	001101_{2}
-13	110011_{2}
$=0$	1000000_{2}

Integer numbers representation

- Binary representation is considered right aligned (decimal point is right to LSB).
- MSB represents the sign bit.

$-2^{\mathrm{N}-1}$	$2^{\mathrm{N}-2}$	\ldots	2^{0}
\mathbf{s}	\mathbf{i}	.	
\leftarrow		N biţi	\rightarrow

- Integer two's complement range:

$$
-2^{N-1}, \ldots,-1,0, \ldots, 2^{N-1}-1
$$

Integer numbers representation

EXAMPLE: (for $N=4$ bits)

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Decimal	Binary
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

Integer numbers representation

- Sign integers addition

	1111		011		71
+3	0011	-5	1011	-3	1101
-2	1110	+3	0011	-4	1100
1	0001	-2	1110	-7	1001

\square An overflow occurs if the result is outside of the N bits representation range:

$$
\begin{aligned}
& \begin{array}{r|l}
+3 & 0011 \\
+6 & 0110 \\
\hline 9 & 1001=-7
\end{array} \\
& \begin{array}{l|l}
-3 & 1101 \\
-6 & 1010 \\
\hline-9 & 0111=7
\end{array}
\end{aligned}
$$

Integer numbers representation

- Sign bit extension
\square Needed when increasing the number of bits for the integer part.
\square Sign bit is copied to the left toward MSB.

	$N=4$ biţi
+3	$\mathbf{0} 011$
-3	$\mathbf{1 1 0 1}$

	$\mathrm{N}^{\prime}=8$ biţi
+3	$\mathbf{0 0 0 0} 0011$
-3	$\mathbf{1 1 1 1 1 1 0 1}$

Integer numbers representation

- Multiplying by a power of 2

Multiplying by 2^{k} is equivalent with shifting left k bits and filling with 0 toward LSB.

	$\mathrm{N}=8$ biţi
3	00000011
3.2^{2}	00001100

	$\mathrm{N}=8$ biţi
-3	11111101
-3.2^{2}	11110100

Integer numbers representation

- Dividing by a power of 2

Dividing by 2^{k} is equivalent with shifting right \boldsymbol{k} bits and sign bit extension.

	$\mathrm{N}=8$ biti
-24	11101000
$-24 / 2^{3}$	$\mathbf{1 1 1 1} 1101$

Integer numbers representation

- Integers multiplication
unsigned integers
\square The result in double precision representation

6	0110 $\times 5$ $\times 0101$ 0110 0000 0110 $0000+$ 0011110

Integer numbers representation

- Multiplication is equivalent with consecutive shift and add operations.
\square For example 5 can be expressed:

$$
5=2^{0}+2^{2}
$$Multiplication can be computed:

$$
\begin{aligned}
& 6 \times 5=6 \times\left(2^{0}+2^{2}\right)=6 \times 1+6 \times 2^{2} \\
& 6 \times 1 \left\lvert\, \begin{array}{c}
0110 \\
6 \times 2^{2} \\
\end{array} \frac{0110}{0011110}+\right.
\end{aligned}
$$

Integer numbers representation

- Integers division
\square Successive subtractions of the divisor from the dividend.

$15 \mid \underline{3}$	1111	11
$-\underline{11}$	101	
	$\underline{0011}$	
	$\underline{00}$	

Fractional numbers representation

- A fractional part f is any number who's modulus satisfies the inequality:

$$
0.0 \leq|f|<1.0
$$

\square Left aligned: binary point is at the right of MSB

-2^{0}	2^{-1}	2^{-2}	\ldots	2^{-B}
\mathbf{s}.		\mathbf{f}		
1 bit	\leftarrow	$\mathrm{B}=\mathrm{N}-1$ bits	\rightarrow	

\square Fixed point fractional representation range:

$$
-1, \ldots,-2^{-B}, 0,2^{-B} \ldots, 1-2^{-B}
$$

Fractional numbers representation

- EXAMPLE:
\square for $N=4$ bits

Decimal	Binary
0	0000
0.125	0001
0.250	0010
0.375	0011
0.500	0100
0.625	0101
0.750	0110
0.875	0111

Decimal	Binary
-1	1000
-0.875	1001
-0.750	1010
-0.625	1011
-0.500	1100
-0.375	1101
-0.250	1110
-0.125	1111

Fractional numbers representation

- Qm.n format
$\square n$ bits for fractional part;
\square (optional) specify the number of bits m for the integer part, excluding the sign bit (MSB);
\square The complete binary representation has $1+m+n$ bits.
- EXAMPLE (for $N=16$ bits):
\square Q15 means 15 bits for the fractional part (16 bits with the sign bit)
\square Q1.14 has 1 bit for the integer part, 14 bits for the fractional part and the sign bit.

Fractional numbers representation

- Quick conversion of fractional numbers into binary
$\square f$ represented on $N=B+1$ bits is an integer multiple of 2-B

Let i the corresponding integer multiple:

$$
i=f \cdot 2^{B}
$$

- Equivalent with a left shifting of f with B bits.

Fractional numbers representation

$-2^{0} \quad 2^{-1}$	\ldots	2^{-B}	
\mathbf{s}	\ldots	\mathbf{f}	
-2^{B}	2^{B-1}	\ldots	2^{0}
s	i		
\leftarrow	N bits	\rightarrow	

\square Converting f from binary to decimal

- consider the binary representation for the corresponding signed integer i and then, divide by 2^{B}

Fractional numbers representation

- EXAMPLE:

Binary to decimal ($N=8$ bits, $B=7$),

- For: 0.0100110 decimal integer: $00100110=38_{10}$ divide by $2^{7}=128: 38 / 128=0.296875$
- For:
two's complement:
1.1101100 divide by $2^{7}=128$: $-20 / 128=-0.15625$

Fractional numbers representation

$-2^{0} \quad 2^{-1}$	\ldots	2^{-B}	
\mathbf{s}	\mathbf{f}		
-2^{B}	2^{B-1}	\ldots	2^{0}
\mathbf{s}	\mathbf{i}		
\leftarrow	N biţi	\rightarrow	

\square Converting f from decimal to binary

- multiply f by 2^{B} (shift left B bits)
- Represent the integer part i as a signed integer on N bits.

Fractional numbers representation

- EXAMPLE:

Decimal to binary ($N=8$ biţi, $B=7$)

- For: 0.875
multiply by 2^{7} :
$0.875 \cdot 128=112_{10}$
represented binary:
$112_{10}=01110000_{2}$
- For:
multiply by 2^{7} :
-0.625
represented in
$-0.625 \cdot 128=-80_{10}$
two's complement: $80_{10}=01010000_{2}$
$-80_{10}=10110000_{2}$

Fractional numbers representation

- For
0.65 ($N=8$ bits, $B=7$)
multiply by 2^{7} :
$0.65 \cdot 128=83.2_{10}$
take the integer part: $83_{10}=01010011_{2}$
\square In the last example the quantization error (by truncation) appears since the fractional 0.65 cannot be exactly represented on 8 bits.
- The result 0.1010011_{2} is equal to 0.6484375 .
- The quantization error is:

$$
\begin{aligned}
& 0.65 \\
- & 0.6484375 \\
\hline= & 0.0015625
\end{aligned}
$$

Floating point representation

- The following are equivalent

Parts of a Floating Point Number

IEEE 754 Standard

■ Single precision: 32 bits, consisting of...
\square Sign bit (1 bit)
\square Exponent (8 bits)Mantissa (23 bits)
■ Double precision: 64 bits, consisting of...
\square Sign bit (1 bit)
\square Exponent (11 bits)
\square Mantissa (52 bits)

Single Precision Format

32 bits

Normalization

- The mantissa is normalized
\square Has an implied decimal place on leftHas an implied "1" on left of the decimal place
- E.g.,Mantissa $\rightarrow \quad 10100000000000000000000$Represents... $1.101_{2}=1.625_{10}$

Excess Notation

- To include +ve and -ve exponents, "excess" notation is used
\square Single precision: excess 127Double precision: excess 1023
- The value of the exponent stored is larger than the actual exponent
- E.g., excess 127,
\rightarrow Exponent $\rightarrow \quad 1$
10000111
\square Represents... $135-127=8$

Example

- Single precision

Hexadecimal

- It is convenient and common to represent the original floating point number in hexadecimal - The preceding example...

| 0 | 10000010 | 1100000000000000000000 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 6 | 0 | 0 | 0 | 0 | 0 |

Converting from Floating Point

- What decimal value is represented by the following 32 -bit floating point number?

C17B0000 ${ }_{16}$

Converting from Floating Point

- Step 1
\square Express in binary and find S, E, and M

$$
\mathrm{C} 17 \mathrm{~B} 0000_{16}=
$$

Converting from Floating Point

- Step 2
\square Find "real" exponent, n
$\square n=\mathrm{E}-127$
$=10000010_{2}-127$
= 130 - 127
$=3$

Converting from Floating Point

- Step 3
\square Put S, M, and n together to form binary result
\square (Don't forget the implied "1." on the left of the mantissa.)
$-1.1111011_{2} \times 2^{n}=$
$-1.1111011_{2} \times 2^{3}=$
-1111.1011_{2}

Converting from Floating Point

- Step 4
\square Express result in decimal

Answer: -15.6875

Converting to Floating Point

- Express 36.5625_{10} as a 32 -bit floating point number (in hexadecimal)

Converting to Floating Point

- Step 1
\square Express original value in binary
$36.5625_{10}=$
100100.1001_{2}

Converting to Floating Point

- Step 2
\square Normalize

$$
\begin{aligned}
& 100100.1001_{2}= \\
& 1.001001001_{2} \times 2^{5}
\end{aligned}
$$

Converting to Floating Point

- Step 3

Determine S, E, and M

Converting to Floating Point

- Step 4
\square Put S, E, and M together to form 32-bit binary result

Converting to Floating Point

- Step 5

Express in hexadecimal

$0100001000^{00100100100000000000000_{2}}=$ $01000010000100100100000000000000_{2}=$ 4

2
1
2
4
0
0
0_{16}

Answer: 42124000_{16}

