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Chapter 2. Binary representation
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Numeration Systems

 Decimal
 the set of symbols is: the set of symbols is:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 The integer number 493 in base 10: The integer number 493 in base 10:
49310 = 4•102 + 9•101 + 3•100 =

= 400    +  90    + 3

 The rational number 35,54 in base 10:
35.6410 = 3•101 + 5•100 + 6•10-1 + 4•10-2 =

30 5 0 6 0 04= 30     +     5    +   0.6   +  0.04
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Numeration Systems

 Binary
 the set of symbols is: the set of symbols is: 

{0, 1};

 110012 = 1•24 + 1•23 + 0•22 + 0•21 + 1•20 = 110012  1 2  1 2  0 2  0 2  1 2
= 16 + 8 + 1 = 25

 110.012 = 1•22 + 1•21 + 0•20 + 0•2-1 + 1•2-2=2

= 4 + 2 + 0.25 = 6.25 
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Conversion between numeration systems 

 Conversion from binary into hexadecimal
 Group into 4 bits (nibbles)

 Each nibble corresponds to a hexadecimal symbol: 

1101101,10011012

0110 1101,1001 10102

6    D  ,  9   A16
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Conversion from decimal into base b

Conversion between numeration systems

 Conversion from decimal into base b
 For the integer part we can write:

 
 d0 is the remainder of division of i to b

    -1 3 2 1 0d b d b ... d b d b d b dk ki       

 d0 is the remainder of division of i to b

 The quotient (another integer) is divided to b

 Repeat until reach 0. 

 The remainder obtained after each division is the symbol dk of 
representing into the base b. 

-1 3 2 1 0
-1 3 2 1 0d b d b ... d b d b d b d bk k

k ki       

5

1 3 2 1 0k k

C i f d i l i t b b

Conversion between numeration systems

 Conversion from decimal into base b
 For the fractional part:

1 2 3d b d b d b d b kf        
 Multiply f with b

1 2 3
1 2 3d b d b d b ... d b ...k

kf         

1 2 1b d d b d b d b kf        
 Keep the integer part from the right part, d–1, which is 

subtracted from the left part.

1 2 3b d d b d b ... d b ...kf          

 Continue by multiplying the remaining fractionary part to b until 
reach 0. 

  1 2
1 2 3b b d =d d b ... d b ...k

kf   
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EXAMPLE

Conversion between numeration systems

 EXAMPLE: 
 Represent the number 23.65 into base 2:

Th i t t The integer part:

23 : 2 = 11 1 LSB

11 : 2 5 111 : 2 = 5 1

5 : 2 = 2 1

2 2 1 0

10111

2 : 2 = 1 0

1 : 2 = 0 1 MSB

2310 = 101112
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Th f i l

Conversion between numeration systems

 The fractional part:

0.65  2 = 1.3 1 MSB

0 3    2 = 0 6 00.3    2 = 0.6 0

0.6    2 = 1.2 1

0 2   2  0 4 00.2    2 = 0.4 0

0.4    2 = 0.8 0 0.6510=0.10(1001)2

0.8    2 = 1.6 1

0.6    2 = 1.2 1

 Results that number 0.65 cannot be exactly represented on a 
finite number of bits

0.2    2 = 0.4 0 ...
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finite number of bits. 



Negative numbers representation

 MSB – sign bit.
 0 for positive numbers (+);

 1 for negative numbers (–).

 The rest of N–1 bits are for value representation. 

2N–2 ... 20

s m
1 bit     N–1 bits         
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1 bit     N–1 bits         

Negative numbers representation

 The representation: sign bit, magnitude
 EXAMPLE:

9 = 0 01001

9 1 01001–9 = 1 01001

 The range of representation:
 2N–1 positive values between 0 and 2N–1 1 2N 1 positive values between 0 and 2N 1–1.

 2N–1 negative values between –(2N–1–1) and 0.

2N–2 ... 20

s m
1 bit     N–1 bits         
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1 bit     N–1 bits         



Negative numbers representation

 Two’s complement representation
 The negative numbers representation is obtained by 

addition of 2N.

EXAMPLE EXAMPLE:
 For N=6 bits (2N = 64).

13 = 00110113 = 0011012

–13 corresponds to 64 + (–13) = 51 = 1100112
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Two’s complement representation

 For obtaining negative numbers:
 Each bit is complemented; Each bit is complemented;

 Add 1. 

 EXAMPLE: EXAMPLE:
 for                          13 = 0011012

complement each bit: 1100102

add 1:                    1100112 = –13

 for                        –13 = 1100112

l t h bit 001100complement each bit: 0011002

add 1:                    0011012 = +13
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Two’s complement representation

 The range of two’s complement representation
 2N–1 positive values between 0 and 2N–1–1.

 2N–1 negative values between –2N–1 and -1. 

 The result of adding a number with its two’s 
complement is 0:

13+ 0011012

–13 1100112

= 0 10000002
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Integer numbers representation

 Binary representation is considered right 
aligned (decimal point is right to LSB). 

 MSB represents the sign bit.

–2N–1 2N–2 ... 202 2 ... 2

s i                    .

 N biţi                 

 Integer two’s complement range:  

1 1,2 ..., 1,0,...,2 1N N   
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Integer numbers representation

 EXAMPLE: (for N=4 bits)

Decimal Binary Decimal BinaryDecimal Binary Decimal Binary

0 0000 -8 1000

1 0001 -7 10011 0001 7 1001

2 0010 -6 1010

3 0011 -5 10113 0011 5 1011

4 0100 -4 1100

5 0101 -3 11015 0101 3 1101

6 0110 -2 1110

7 0111 -1 1111
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7 0111

Integer numbers representation

 Sign integers addition
  1111     011     11 

+3 0011  –5 1011  –3 1101 
–2 1110  +3 0011  –4 1100 

 An overflow occurs if the result is outside of the N bits 

1 0001  –2 1110  –7 1001 
 

representation range:

+3 0011  –3 1101 +3 0011  3 1101 
+6 0110  –6 1010 

9 1001=–7  –9 0111 =7 
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Integer numbers representation

 Sign bit extension
 Needed when increasing the number of bits for the 

integer part.

Si bit i i d t th l ft t d MSB Sign bit is copied to the left toward MSB.

 N=4 biţi   N’=8 biţi 
+3 0011  +3 0000 0011 
–3 1101  –3 1111 1101 
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Integer numbers representation

 Multiplying by a power of 2
Multiplying by 2k is equivalent with shifting left k

bits and filling with 0 toward LSB.

 N=8 biţi   N=8 biţi 
3 0000 0011  –3 1111 1101 
3.22 0000 1100  –3.22 1111 0100 
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Integer numbers representation

 Dividing by a power of 2
 Dividing by 2k is equivalent with shifting right k bits

and sign bit extension.

 N=8 biţi   N=8 biţi 
24 0001 1000  24 1110 1000 24 0001 1000  –24 1110 1000 
24/23 0000 0011  –24/23 1111 1101 
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Integer numbers representation

 Integers multiplication

6       0110 

 unsigned integers

 The result in double 
6 

5 
 

      0110 
    0101 
      0110 

precision representation

 Binary multiplication with  
 
 

      0110 
    0000 
  0110 

 Binary multiplication with 
0 and 1

__ 
30 

0000      + 
0011110 
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Integer numbers representation

 Multiplication is equivalent with consecutive shift 
d dd tiand add operations.

 For example 5 can be expressed:
0 2

Multiplication can be computed:

0 25 2 2 

 0 2 2 0 2 26 5 6 2 2 6 1 6 2       

61       0110 61 
622 

      0110 
  0110      + 
0011110 
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Integer numbers representation

 Integers division
 Successive subtractions of the divisor from the 

dividend.

15| 3    1111 11 
5  –11 101 

  0011 
    –11 
      00       00 
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Fractional numbers representation

 A fractional part f is any number who’s modulus 
ti fi th i litsatisfies the inequality:

0.0 | | 1.0f 

 Left aligned: binary point is at the right of MSB

–20 2–1 2–2 ... 2–B

s . f

1bit  B=N–1 bits          

 Fixed point fractional representation range:

23

1,..., 2 ,0,2 ...,1 2B B B    

Fractional numbers representation

 EXAMPLE:
 for N=4 bits for N 4 bits

Decimal Binary Decimal Binary

0 0000 -1 10000 0000 000

0.125 0001 -0.875 1001

0.250 0010 -0.750 1010

0.375 0011 -0.625 1011

0.500 0100 -0.500 1100

0.625 0101 -0.375 1101

0.750 0110 -0.250 1110
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0.875 0111 -0.125 1111



Fractional numbers representation

 Qm.n format
 n bits for fractional part;p

 (optional) specify the number of bits m for the integer 
part, excluding the sign bit (MSB);

 The complete binary representation has 1+m+n bits.

 EXAMPLE (for N=16 bits):
 Q15 means 15 bits for the fractional part (16 bits with the sign 

bit)

 Q1 14 has 1 bit for the integer part 14 bits for the fractional part Q1.14 has 1 bit for the integer part, 14 bits for the fractional part 
and the sign bit.
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Fractional numbers representation

 Quick conversion of fractional numbers into 
binarybinary
 f represented on N=B+1 bits is an integer multiple of 

2–B2 B
–20 2–1 2–2 ... 2–B

s . f

 Let i the corresponding integer multiple: 
2Bi f

 Equivalent with a left shifting of f with B bits. 

2i f 
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Fractional numbers representation

–20 2–1                     ...               2–B

s  . f

–2B 2B–1                    ...               20

s i                   .

 N bits                

 Converting f from binary to decimal

 N bits                

 consider the binary representation for the corresponding 
signed integer i and then, divide by 2B
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Fractional numbers representation

 EXAMPLE:
 Binary to decimal (N=8 bits, B=7),

 For: 0.010 0110 
d i l i t 0010 0110 38decimal integer: 0010 0110 = 3810

divide by 27=128: 38/128 = 0.296875

 For: 1.110 1100
two’s complement: 0001 0100 = 20two s complement: –0001 0100 = –2010

divide by 27=128: –20/128 = –0.15625
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Fractional numbers representation

–20 2–1                     ...               2–B

s  . f

–2B 2B–1                    ...               20

s i                   .

 N biţi                

 Converting f from decimal to binary
 multiply f by 2B (shift left B bits) multiply f by 2 (shift left B bits)

 Represent the integer part i as a signed integer on N bits.   
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Fractional numbers representation

 EXAMPLE:
 Decimal to binary (N=8 biţi, B=7)y ( ţ )

 For: 0.875 
multiply by 27: 0.875.128=11210

represented binary: 11210 = 011100002

 For: –0.625
multiply by 27: –0.625.128= –8010

represented in 80 01010000represented in 8010 = 010100002

two’s complement: –8010 = 101100002
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Fractional numbers representation

 For 0.65 (N=8 bits, B=7)
multiply by 27: 0.65.128= 83.210

t k th i t t 83 01010011take the integer part:  8310 = 010100112

I th l t l th ti ti (b In the last example the quantization error (by 
truncation) appears since the fractional 0.65 cannot 
be exactly represented on 8 bitsbe exactly represented on 8 bits. 
 The result 0.10100112 is equal to 0.6484375.

 The quantization error is: 0.65q
- 0.6484375
= 0.0015625
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Floating point representation
 The following are equivalent The following are equivalent

representations of 1,234

123,400.0    x 10-2

12 340 0 x 10-1
The representations differ 
in that the decimal place –
th “ i t” “fl t ” t th

12,340.0    x 10 1

1,234.0    x 100

123 101 the “point” – “floats” to the 
left or right (with the 
appropriate adjustment in 

123.4    x 101

12.34   x 102
pp p j

the exponent).1.234  x 103

0.1234 x 104
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Parts of a Floating Point Number

0 9876 x 10-3 Exponent-0.9876 x 10 3

Sign of Location of
Mantissa

Sign of
exponent

mantissa decimal point Mantissa

Base
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IEEE 754 Standard

 Single precision: 32 bits, consisting of...
 Sign bit (1 bit)

 Exponent (8 bits)

Mantissa (23 bits) 

 Double precision: 64 bits, consisting of…
 Sign bit (1 bit)

 Exponent (11 bits)p ( )

Mantissa (52 bits)
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Single Precision Format

32 bits

Mantissa (23 biţi)

Exponent (8 biţi)

Sign of mantissa (1 bit)
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Normalization

 The mantissa is normalized
 Has an implied decimal place on left

 Has an implied “1” on left of the decimal place

 E.g.,
Mantissa  10100000000000000000000
 Represents… 1.1012 = 1.62510
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Excess Notation

 To include +ve and –ve exponents, “excess” 
t ti i dnotation is used 

 Single precision:  excess 127

 Double precision: excess 1023

 The value of the exponent stored is larger than 
the actual exponent

 E.g., excess 127,g , ,
 Exponent 
 Represents…

10000111
135 – 127 = 8
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 Represents… 135 127  8

Example

Si l i i Single precision

0 10000010 11000000000000000000000

1 1121.112

130 – 127 = 3

0 = positive mantissa

+1.112 x 23 = 1110.02 = 14.010
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Hexadecimal

 It is convenient and common to represent the 
i i l fl ti i t b i h d i loriginal floating point number in hexadecimal

 The preceding example…

0 10000010 110000000000000000000000 10000010 11000000000000000000000

4 1 6 0 0 0 0 0
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Converting from Floating Point

 What decimal value is represented by the 
following 32-bit floating point number?o o g 3 b t oat g po t u be

C17B000016
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Converting from Floating Point

 Step 1
 Express in binary and find S, E, and M

C17B000016 = 

1 10000010 111101100000000000000002

S E MS E M

1 negative1 = negative
0 = positive
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Converting from Floating Point

 Step 2
 Find “real” exponent, n

 n = E – 127

= 100000102 – 127

= 130 – 127

= 3
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Converting from Floating Point

 Step 3
 Put S, M, and n together to form binary result

 (Don’t forget the implied “1.” on the left of the 
mantissa.)

-1.11110112 x 2n =2 

-1.11110112 x 23 =

-1111.10112
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Converting from Floating Point

 Step 4
 Express result in decimal

-1111.10112
15-15 2-1 = 0.5

2-3 = 0.125
42-4 = 0.0625

0.6875

Answer: -15.6875
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Answer: 15.6875



Converting to Floating Point

 Express 36.562510 as a 32-bit floating point 
number (in hexadecimal)
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Converting to Floating Point

 Step 1
 Express original value in binary

36.562510 =36.562510

100100.10012
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Converting to Floating Point

 Step 2
 Normalize

100100 1001 =100100.10012 = 

1.0010010012 x 252
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Converting to Floating Point

 Step 3
 Determine S, E, and M

+1.0010010012 x 25

MS n E = n + 127
= 5 + 127
= 132= 132
= 100001002

S = 0 (because the value is positive)
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Converting to Floating Point

 Step 4
 Put S, E, and M together to form 32-bit binary result Put S, E, and M together to form 32 bit binary result

0 10000100 001001001000000000000002
S E M
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Converting to Floating Point

 Step 5
 Express in hexadecimal Express in hexadecimal

0 10000100 00100100100000000000000 =0 10000100 001001001000000000000002 =

0100 0010 0001 0010 0100 0000 0000 00002 =

4    2    1    2    4    0    0    016 

Answer: 4212400016
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