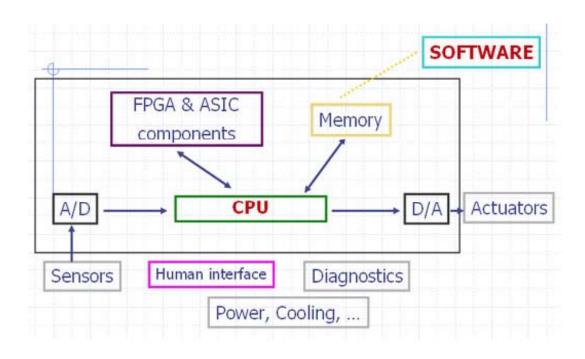

SI. Mihnea UDREA, mihnea@comm.pub.ro
Conf. Mihai STANCIU, ms@elcom.pub.ro

r,

Basic Components of Digital Computer

- CPU (Central Processing Unit)
 - □ Control and data path
- Memory
 - □ Stores instruction and data
- Input/output
 - Interact with the outside of computers

Could be a chip, a board, or several boards


What is and Embedded System?

- A specialized computer system that is part of a larger system or machine.
 - □ Virtually all appliances that have a digital interface utilize embedded systems
 - watches,
 - microwaves,
 - DVD players,
 - cars
 - □ Typically, an embedded system is housed on a single microprocessor board with the programs stored in ROM

3

What is and Embedded System?

ES, Other definitions

- A special purpose computer built into a larger device.
 - □ Special purpose:
 - Embedded systems have a (more or less) well-defined purpose
 - Contrast with: general purpose computers (PCs etc)
 - Both hardware and software is tailored to application(s), which are well defined
 - However, re-programmability is a requirement
 - □ Built into a larger device:
 - ESs are (usually) part of a larger device, augmenting its capabilities

5

ES Types & Characteristics

- Types of Processing unit:
 - □ Hardwired logic
 - □ Programmable units
- ES Characteristics:
 - □ Efficiently
 - □ Cost effective
 - □ Power efficiently
 - □ Real-time
 - □ Predictability

ES Solutions

- Embedded Systems Solutions:
 - Microcontrollers
 - □ Embedded Processors
 - □ Digital Signal processors

7

ES Development

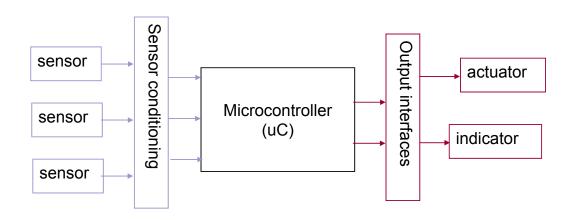
- System development
- Electronics
- PCB Layout
- Software
- Mechanical
- Product qualification
- DFM design for manufacturability

ES Applications

- Signal processing systems
 - ☐ Real-time video, DVD players, Medical equipment.
- Distributed control
 - □ Network routers, switches, mass transit systems, Elevators
- "Small" systems
 - □ Mobile phones, pagers, home appliances, toys, smartcards, MP3 players, PDAs, digital cameras, sensors, pc keyboard & mouse
- Modern cars: Up to 100 or more processors
 - ☐ Engine control unit
 - ☐ ABS systems (Anti Lock Brake systems)
 - Emissions control
 - □ Diagnostics and Security systems
 - □ Accessories (doors, windows etc)

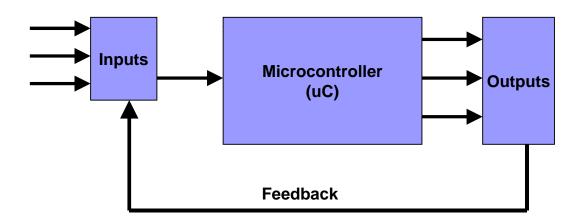
Typical ES Hardware

- Commercial off-the-shelf components (COTS)
 - □ e.g. wireless radios, sensors, I/O devices
 - □ Cheap
- Application-Specific ICs (ASICs)
 - □ ICs tailored to meet application needs
 - ☐ Good performance for their intended task(s)
 - □ Original ESs were ASICs only
- Domain-specific processors
 - □ DSPs
 - Microcontrollers
- Microprocessors
 - □ General Purpose Processors

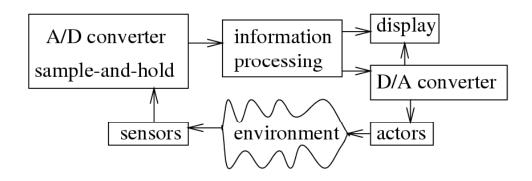

New trends in ES HW

- Systems-on-chip
 - □ Usual (or desired) specs:
 - 32-bit RISC CPU
 - Built-in interfaces to RAM and ROM
 - Built-in DMA, interrupt and timing controllers
 - Built-in interfaces to disk or flash memory
 - Built-in Ethernet/802.11 interfaces
 - Built-in LCD/CRT interfaces
 - □ New SOCs appearing almost every week!

11



ES General Block Diagram


An Embedded Control System

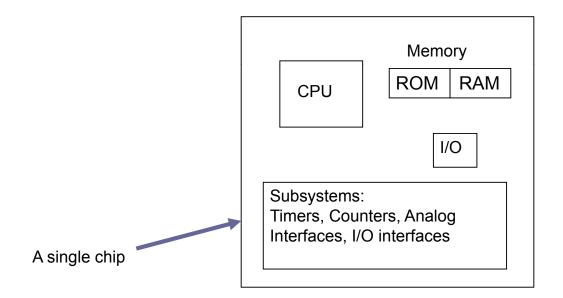
13

An Embedded Control System

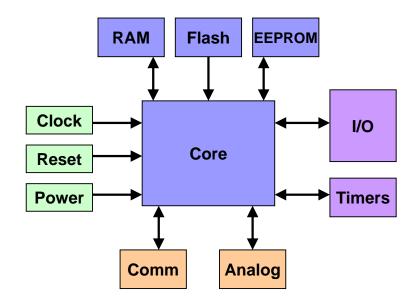
Real Time Control

- Must be able to respond predictably and in a known amount of time
- Environment cannot wait for microcontroller to respond.

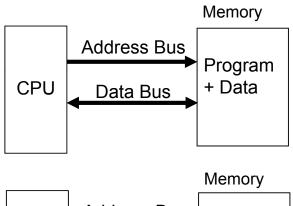
15


What is a Microcontroller?

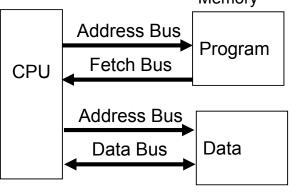
- A microcontroller is an entire computer manufactured on a single chip.
 - □ CPU
 - Memory
 - RAM (Random Access Memory) FRAM, DDR2
 - ROM (Read Only Memory) Flash, EEPROM
 - □ Input/Output (I/O)
 - Serial ports SPI, I2C, UART
 - Parallel ports
 - □ USB, CAN-BUS, IR
 - □ timers, counters,
 - □ interrupt control,
 - □ analog-to-digital converters


Microcontroller

17



Microcontroller Architecture



Microcontroller Architecture

Von Neumann Architecture

Harvard Architecture

19

Microcontroller Manufacturers

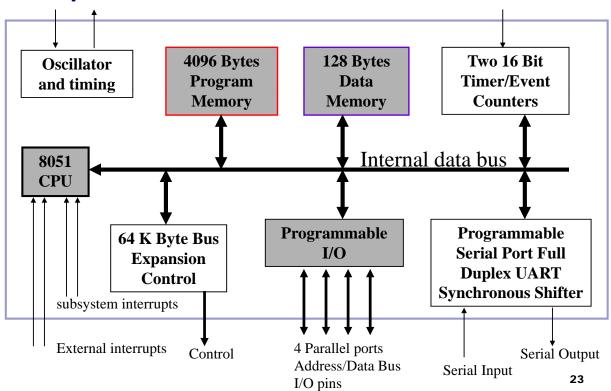
- ARM Advanced RISC Machines
- Atmel
- Freescale Semiconductor- uC, DSP
- Intel- 8051/8052 cores
- Microchip
- NEC
- Renasas
- Sharp
- ST Microelectronics
- Texas Instruments- uC, DSP

Common Microcontrollers

- ARM Advanced RISC Machines
- Atmel
 - □ 8-bit tinyAVR
 - □ 8-bit megaAVR
 - □ 8/16-bit AVR XMEGA
 - □ 32-bit AVR UC3
- Freescale Semiconductor uC, DSP
 - □ 8-bit
 - 68HC05
 - 68HC08
 - 68HC11
 - □ 16-bit
 - 68HC12
 - 68HC16
 - □ 32-bit
 - 683xx

- Intel 8051/8052 cores
 - □ 8-bit
 - 8XC42
 - MCS48
 - MCS51
 - 8xC251
 - □ 16-bit
 - MCS96
 - MXS296
- Microchip
 - □ 12-bit instruction PIC
 - □ 14-bit instruction PIC
 - PIC16F84
 - 16-bit instruction PIC
- NEC
- Texas Instruments uC, DSP

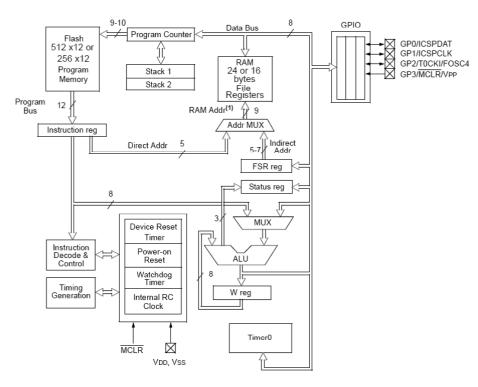
21



Example: 8051 Microcontroller

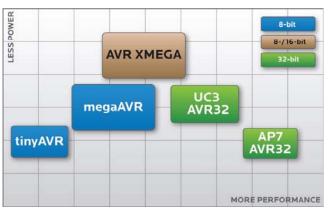
- The 8051 is the first microcontroller of the MCS-51 family introduced by Intel Corporation at the end of the 1970's.
- The 8051 family characteristics:
 - □ 4K Bytes ROM
 - □ 128 Bytes RAM
 - □ two timer/counters (16 bit)
 - □ A serial port
 - ☐ 4 general purpose parallel input/output port
 - □ Interrupt controller
 - □ The 8051 can address 64K of external data memory and 64K of External program memory

Example: 8051 Microcontroller



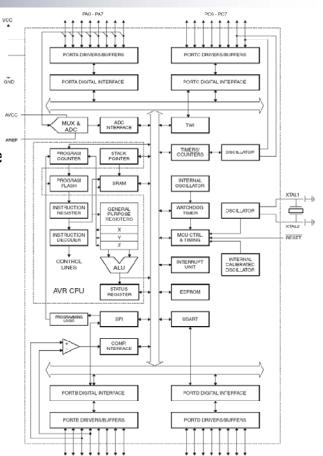
Example: PIC10F200 Microcontroller

- 8 bit microcontroller manufactured byMicrochip
- Caracteristici:
 - □ RISC –33 instruction set on 12-biţi
 - ☐ 2-level deep stack
 - ☐ 4MHz precision internal clock
 - □ Sleep mode 100nA
 - □ Internal pull-ups
 - □ 3 Input/Output direct LED drive
 - □ 8-bit Timer programmable prescaler
 - □ Optional Comparator, memory
 - □ \$0.34/3K, \$0.59/1


Example: PIC10F200 Microcontroller

25

Example: Atmel AVR and AVR32


- tinyAVR
 - □ 1-16 KBytes Flash, 8-32 pin
- megaAVR
 - ☐ 4-256 KBytes Flash, 28-100 pin
- AVR XMEGA
 - ☐ 16-384 KBytes Flash, 44-100 pin
- AVR32 UC3
 - ☐ 16-512 KBytes Flash, 48-144 pin
- AVR32 AP7
 - ☐ Up to 32 KBytes On-chip SRAM,
 - □ 196-256 pin packages

26

Example: ATmega16A

- Low-power AVR 8-bit
- Advanced RISC Architecture
- 131 Instructions Single-clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- 16K Bytes Flash program memory
- 512 Bytes EEPROM
- 1K Byte Internal SRAM
- Two 8-bit Timer/Counters
- One 16-bit Timer
- Four PWM Channels
- 8-channel, 10-bit ADC
- 32 Programmable I/O Lines

